Effect of voltage sensitive fluorescent proteins on neuronal excitability (Akemann et al. 2009)


"Fluorescent protein voltage sensors are recombinant proteins that are designed as genetically encoded cellular probes of membrane potential using mechanisms of voltage-dependent modulation of fluorescence. Several such proteins, including VSFP2.3 and VSFP3.1, were recently reported with reliable function in mammalian cells. ... Expression of these proteins in cell membranes is accompanied by additional dynamic membrane capacitance, ... We used recordings of sensing currents and fluorescence responses of VSFP2.3 and of VSFP3.1 to derive kinetic models of the voltage-dependent signaling of these proteins. Using computational neuron simulations, we quantitatively investigated the perturbing effects of sensing capacitance on the input/output relationship in two central neuron models, a cerebellar Purkinje and a layer 5 pyramidal neuron. ... ". The Purkinje cell model is included in ModelDB.

Model Type: Neuron or other electrically excitable cell

Region(s) or Organism(s): Cerebellum

Cell Type(s): Cerebellum Purkinje GABA cell

Currents: I Na,t; I A; I K; I h; I K,Ca; I Calcium

Genes: Kv1.1 KCNA1; Kv4.3 KCND3; Kv3.3 KCNC3; Kv3.4 KCNC4; HCN1

Simulation Environment: NEURON

Implementer(s): Akemann, Walther [akemann at brain.riken.jp]

References:

Akemann W, Lundby A, Mutoh H, Knöpfel T. (2009). Effect of voltage sensitive fluorescent proteins on neuronal excitability. Biophysical journal. 96 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.