Point process framework for modeling electrical stimulation of auditory nerve (Goldwyn et al. 2012)

A point process model of the auditory nerve that provides a compact and accurate description of neural responses to electric stimulation. Inspired by the framework of generalized linear models, the model consists of a cascade of linear and nonlinear stages. A semi-analytical procedure uniquely determines each parameter in the model on the basis of fundamental statistics from recordings of single fiber responses to electric stimulation, including threshold, relative spread, jitter, and chronaxie. The model also accounts for refractory and summation effects that influence the responses of auditory nerve fibers to high pulse rate stimulation.

Model Type: Neuron or other electrically excitable cell

Cell Type(s): Auditory nerve

Model Concept(s): Audition

Simulation Environment: MATLAB

Implementer(s): Goldwyn, Joshua [jhgoldwyn at gmail.com]


Goldwyn JH, Rubinstein JT, Shea-Brown E. (2012). A point process framework for modeling electrical stimulation of the auditory nerve. Journal of neurophysiology. 108 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.