Equivalent excitability achieved via different Nav subtypes (Xie et al., 2024)

Abstract: Nociceptive sensory neurons convey pain signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but efforts to treat pain by inhibiting NaV1.7 pharmacologically have largely failed. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve equivalent excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other two subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes – an example of degeneracy – compromises the reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.

Experimental motivation: The channel distributions are based on voltage clamp experiments

Model Type: Neuron or other electrically excitable cell

Region(s) or Organism(s):

Cell Type(s): Dorsal Root Ganglion (DRG) cell





Model Concept(s):

Simulation Environment: MATLAB


Xie YF, Yang J, Ratté S, Prescott SA. (2024). Similar excitability through different sodium channels and implications for the analgesic efficacy of selective drugs. eLife. 12 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.