L5 cortical neurons with recreated synaptic inputs in vitro correlation transfer (Linaro et al 2019)


"...We studied pyramidal neurons and two classes of GABAergic interneurons of layer 5 in neocortical brain slices obtained from rats of both sexes, and we stimulated them with biophysically realistic correlated inputs, generated using dynamic clamp. We found that the physiological differences between cell types manifested unique features in their capacity to transfer correlated inputs. We used linear response theory and computational modeling to gain clear insights into how cellular properties determine both the gain and timescale of correlation transfer, thus tying single-cell features with network interactions. Our results provide further ground for the functionally distinct roles played by various types of neuronal cells in the cortical microcircuit..."

Model Type: Neuron or other electrically excitable cell

Region(s) or Organism(s): Neocortex

Cell Type(s): Abstract integrate-and-fire adaptive exponential (AdEx) neuron

Transmitters: Gaba

Simulation Environment: MATLAB

Implementer(s): Ocker, Gabriel K

References:

Linaro D, Ocker GK, Doiron B, Giugliano M. (2019). Correlation Transfer by Layer 5 Cortical Neurons Under Recreated Synaptic Inputs In Vitro. The Journal of neuroscience : the official journal of the Society for Neuroscience. 39 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.