Sherman SM, Koch C. (1986). The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental brain research. 63 [PubMed]

See more from authors: Sherman SM · Koch C

References and models cited by this paper
References and models that cite this paper

Adams W, Graham JN, Han X, Riecke H. (2019). Top-down inputs drive neuronal network rewiring and context-enhanced sensory processing in olfaction. PLoS computational biology. 15 [PubMed]

Allken V, Chepkoech JL, Einevoll GT, Halnes G. (2014). The subcellular distribution of T-type Ca2+ channels in interneurons of the lateral geniculate nucleus. PloS one. 9 [PubMed]

Béhuret S, Deleuze C, Gomez L, Frégnac Y, Bal T. (2013). Cortically-controlled population stochastic facilitation as a plausible substrate for guiding sensory transfer across the thalamic gateway PLoS computational biology. 9 [PubMed]

Debay D, Wolfart J, Le Franc Y, Le Masson G, Bal T. (2004). Exploring spike transfer through the thalamus using hybrid artificial-biological neuronal networks. Journal of physiology, Paris. 98 [PubMed]

Destexhe A. (2000). Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. Journal of physiology, Paris. 94 [PubMed]

Huertas MA, Groff JR, Smith GD. (2005). Feedback inhibition and throughput properties of an integrate-and-fire-or-burst network model of retinogeniculate transmission. Journal of computational neuroscience. 19 [PubMed]

Mukherjee P, Kaplan E. (1995). Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling. Journal of neurophysiology. 74 [PubMed]

Suffczynski P, Kalitzin S, Lopes Da Silva FH. (2004). Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience. 126 [PubMed]

Wolfart J, Debay D, Le Masson G, Destexhe A, Bal T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature neuroscience. 8 [PubMed]

Zhu JJ, Uhlrich DJ, Lytton WW. (1999). Properties of a hyperpolarization-activated cation current in interneurons in the rat lateral geniculate nucleus. Neuroscience. 92 [PubMed]

Zhu JJ, Uhlrich DJ, Lytton WW. (1999). Burst firing in identified rat geniculate interneurons. Neuroscience. 91 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.