Detailed passive cable model of Dentate Gyrus Basket Cells (Norenberg et al. 2010)


Fast-spiking, parvalbumin-expressing basket cells (BCs) play a key role in feedforward and feedback inhibition in the hippocampus. ... To quantitatively address this question, we developed detailed passive cable models of BCs in the dentate gyrus based on dual somatic or somatodendritic recordings and complete morphologic reconstructions. Both specific membrane capacitance and axial resistivity were comparable to those of pyramidal neurons, but the average somatodendritic specific membrane resistance (R(m)) was substantially lower in BCs. Furthermore, R(m) was markedly nonuniform, being lowest in soma and proximal dendrites, intermediate in distal dendrites, and highest in the axon. ... Further computational analysis revealed that these unique cable properties accelerate the time course of synaptic potentials at the soma in response to fast inputs, while boosting the efficacy of slow distal inputs. These properties will facilitate both rapid phasic and efficient tonic activation of BCs in hippocampal microcircuits.

Model Type: Neuron or other electrically excitable cell; Dendrite

Region(s) or Organism(s): Hippocampus; Dentate gyrus

Cell Type(s): Dentate gyrus basket cell

Model Concept(s): Parameter Fitting; Detailed Neuronal Models

Simulation Environment: NEURON

Implementer(s): Matthia (Norenberg), Anja [anja.matthiae at charite.de]

References:

Nörenberg A, Hu H, Vida I, Bartos M, Jonas P. (2010). Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons. Proceedings of the National Academy of Sciences of the United States of America. 107 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.