Explaining pathological changes in axonal excitability by dynamical analysis (Coggan et al. 2011)


"... To help decipher the biophysical basis for ‘paroxysmal’ spiking, we replicated afterdischarge (i.e. continued spiking after a brief stimulus) in a minimal conductance-based axon model. ... A perturbation could abruptly switch the system between two (quasi-)stable attractor states: rest and repetitive spiking. ... Initiation of afterdischarge was explained by activation of the persistent inward current forcing the system to cross a saddle point that separates the basins of attraction associated with each attractor. Termination of afterdischarge was explained by the attractor associated with repetitive spiking being destroyed. ... The model also explains other features of paroxysmal symptoms, including temporal summation and refractoriness."

Model Type: Axon

Model Concept(s): Nociception

Simulation Environment: XPPAUT

Implementer(s): Prescott, Steven [steve.prescott at sickkids.ca]]

References:

Coggan JS, Ocker GK, Sejnowski TJ, Prescott SA. (2011). Explaining pathological changes in axonal excitability through dynamical analysis of conductance-based models. Journal of neural engineering. 8 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.