Nonlinear neuronal computation based on physiologically plausible inputs (McFarland et al. 2013)


"... Here we present an approach for modeling sensory processing, termed the Nonlinear Input Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise from rectification of a neuron’s inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN) cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron’s response, which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently optimized and appropriately regularized. ... ”

Model Type: Neuron or other electrically excitable cell

Cell Type(s): Retina ganglion GLU cell

Model Concept(s): Parameter Fitting; Rate-coding model neurons

Simulation Environment: MATLAB (web link to model)

Implementer(s): McFarland, James M [jmmcfarl at umd.edu]

References:

McFarland JM, Cui Y, Butts DA. (2013). Inferring nonlinear neuronal computation based on physiologically plausible inputs. PLoS computational biology. 9 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.