Non-Weak E-Fields Pyramidal Neurons (Reznik et. al.,2015)


Effect of Polarization Induced by Non-Weak Electric Fields on the Excitability of Elongated Neurons With Active Dendrite. In response to polarization, the active currents in the dendrites of pyramidal neurons play a pivotal role in the excitability of elongated neurons. Depending on a number of parameters either hyperpolarizing or depolarizing currents in the dendrite dominate as polarization is increased. Furthermore, the impact that these active dendrite channels (Ca, KAHP, etc) occur when only a small fraction of their channels are open.

Model Type: Neuron or other electrically excitable cell

Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex U1 L6 pyramidal corticalthalamic GLU cell; Neocortex layer 4 pyramidal cell

Currents: I h; I K,Ca

Model Concept(s): Extracellular Fields

Simulation Environment: MATLAB

Implementer(s): Barreto, Ernest

References:

Reznik RI, Barreto E, Sander E, So P. (2016). Effects of polarization induced by non-weak electric fields on the excitability of elongated neurons with active dendrites. Journal of computational neuroscience. 40 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.