"Although motoneurons have often been considered to be fairly linear transducers of synaptic input, recent evidence suggests that strong persistent inward currents (PICs) in motoneurons allow neuromodulatory and inhibitory synaptic inputs to induce large nonlinearities in the relation between the level of excitatory input and motor output. To try to estimate the possible extent of this nonlinearity, we developed a pool of model motoneurons designed to replicate the characteristics of motoneuron input-output properties measured in medial gastrocnemius motoneurons in the decerebrate cat with voltage- clamp and current-clamp techniques. We drove the model pool with a range of synaptic inputs consisting of various mixtures of excitation, inhibition, and neuromodulation. We then looked at the relation between excitatory drive and total pool output. Our results revealed that the PICs not only enhance gain but also induce a strong nonlinearity in the relation between the average firing rate of the motoneuron pool and the level of excitatory input. The relation between the total simulated force output and input was somewhat more linear because of higher force outputs in later-recruited units. ..."
Model Type: Neuron or other electrically excitable cell
Cell Type(s): Spinal cord lumbar motor neuron alpha ACh cell
Simulation Environment: NEURON
Implementer(s): Powers, Randy [rkpowers at u.washington.edu]
References:
Powers RK, Heckman CJ. (2017). Synaptic control of the shape of the motoneuron pool input-output function. Journal of neurophysiology. 117 [PubMed]