In this work, we compare the dynamics of different buffering models during generation of a dendritic Ca2+ spike in a single compartment model of a Purkinje cell dendrite. The Ca2+ buffering models used are 1) a single Ca2+ pool, 2) two Ca2+ pools respectively for the fast and slow transients, 3) a detailed calcium model with buffers, pump (Schmidt et al., 2003), and diffusion and 4) a calcium model with buffers, pump and diffusion compensation. The parameters of single pool and double pool are tuned, using Neurofitter (Van Geit et al., 2007), to approximate the behavior of detailed calcium dynamics over range of 0.5 µM to 8 µM of intracellular calcium. The diffusion compensation is modeled using a buffer-like mechanism called DCM. To use DCM robustly for different diameter compartments, its parameters are estimated, using Neurofitter (Van Geit et al., 2007), as a function of compartment diameter (0.8 µm-20 µm).
Model Type: Dendrite
Cell Type(s): Cerebellum Purkinje GABA cell
Model Concept(s): Calcium dynamics
Simulation Environment: NEURON
References:
Anwar H, Hong S, De Schutter E. (2012). Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cells. Cerebellum (London, England). 11 [PubMed]