Squid axon: Bifurcation analysis of mode-locking (Lee & Kim 2006) (Gangal & Dar 2014)


Gangal H, Dar G. (2914). Mode locking, chaos and bifurcations in Hodgkin-Huxley neuron forced by sinusoidal current Chaotic Modeling and Simulation (CMSIM). 3

See more from authors: Gangal H · Dar G

References and models cited by this paper

Borkowski LS. (2009). Response of a Hodgkin-Huxley neuron to a high-frequency input. Physical review. E, Statistical, nonlinear, and soft matter physics. 80 [PubMed]

Borkowski LS. (2011). Bistability and resonance in the periodically stimulated Hodgkin-Huxley model with noise. Physical review. E, Statistical, nonlinear, and soft matter physics. 83 [PubMed]

Guttman R, Feldman L, Jakobsson E. (1980). Frequency entrainment of squid axon membrane. The Journal of membrane biology. 56 [PubMed]

Kaplan DT et al. (1996). Subthreshold dynamics in periodically stimulated squid giant axons. Physical review letters. 76 [PubMed]

Lee SG, Kim S. (2006). Bifurcation analysis of mode-locking structure in a Hodgkin-Huxley neuron under sinusoidal current. Physical review. E, Statistical, nonlinear, and soft matter physics. 73 [PubMed]

Matsumoto G, Aihara K. (1986). Chaotic oscillations and bifurcations in squid giant axon CHAOS.

Matsumoto G, Ichikawa M, Aihara K, Tasaki A. (1984). Periodic and nonperiodic responses of membrane potentials in squid giant axons during sinusoidal current stimulation J. Theoret. Neurobio.. 3

Parmananda P, Mena CH, Baier G. (2002). Resonant forcing of a silent Hodgkin-Huxley neuron. Physical review. E, Statistical, nonlinear, and soft matter physics. 66 [PubMed]

Xie Y, Chen L, Kang YM, Aihara K. (2008). Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model. Physical review. E, Statistical, nonlinear, and soft matter physics. 77 [PubMed]

References and models that cite this paper

Lee SG, Kim S. (2006). Bifurcation analysis of mode-locking structure in a Hodgkin-Huxley neuron under sinusoidal current. Physical review. E, Statistical, nonlinear, and soft matter physics. 73 [PubMed]

See more from authors: Lee SG · Kim S

References and models cited by this paper

Arrigo P et al. (1987). Chaos in Biological Systems.

Bak P. (1986). Phys Today. 39

Bak P, Jensen MH. (1985). Phys Scr. T9

Bak P, Jensen MH, Bohr T. (1984). Phys Rev A. 30

Baltanas JP, Casado JM. (2002). Phys Rev E. 65

Barbi M, Chillemi S, Garbo AD. (2001). Int J Bifurcation Chaos Appl Sci Eng. 11

Coombes S, Bressloff PC. (1999). Mode locking and Arnold tongues in integrate-and-fire neural oscillators. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. 60 [PubMed]

Coombes S, Osbaldestin AH. (2000). Period-adding bifurcations and chaos in a periodically stimulated excitable neural relaxation oscillator. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. 62 [PubMed]

Coombes S, Owen MR, Smith GD. (2001). Mode locking in a periodically forced integrate-and-fire-or-burst neuron model. Physical review. E, Statistical, nonlinear, and soft matter physics. 64 [PubMed]

Farmer JD et al. (1983). Phys Rev Lett. 51

Fellous JM, Sejnowski T, Thomas P, Tiesinga PHE. (2001). Abstr. Soc. Neurosci. 27, 821.12.

Goshen S, Rabinovitch A, Thieberger R. (1993). J Theor Biol. 160

Guevara MR, Shrier A, Glass L. (1988). Phase-locked rhythms in periodically stimulated heart cell aggregates. The American journal of physiology. 254 [PubMed]

HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]

Holden AV. (1976). The response of excitable membrane models to a cyclic input. Biological cybernetics. 21 [PubMed]

Jiang Y. (2006). Phys Rev E. 71

Kuznetsov Y. (1998). Elements of applied bifurcation theory (2nd ed.).

Laing CR, Longtin A. (2003). Periodic forcing of a model sensory neuron. Physical review. E, Statistical, nonlinear, and soft matter physics. 67 [PubMed]

Lee SG. (1999). Thesis PHD.

Lee SG, Kim S. (). (unpublished).

Lee SG, Kim S. (1999). Parameter dependence of stochastic resonance in the stochastic Hodgkin-Huxley neuron. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. 60 [PubMed]

Lee SG, Kim S, Kook H. (1997). Int J Bifurcation Chaos Appl Sci Eng. 7

Mackay D, McCulloch W. (1952). The limiting information capacity of a neuronal link Bull Math Biophy. 14

Matsumoto G, Aihara K. (1987). Chaos in Biological Systems.

Matsumoto G, Aihara K, Numajiri T, Kotani M. (1986). Phys Lett A. 116

Matsumoto G, Hanyu Y, Shimokawa K. (1998). J Phys Soc Jpn. 67

Matsumoto G, Takahashi N, Musha T, Kubo R, Hanyu Y. (1990). Physica D. 43

Meunier C, Hansel D, Mato G. (1993). Phase dynamics for weakly coupled Hodgkin-Huxley neurons. Europhys Lett. 23

Ostlund S, Rand D, Sethna J, Siggia ED. (1983). Physica D. 8

Sallé HJ, Verberk MM. (1984). Comparison of five methods for measurement of vibratory perception. International archives of occupational and environmental health. 53 [PubMed]

Sato S, Doi S. (1992). J Math Biol. 112

Sato S, Doi S. (1995). J Math Biol. 125

Sato S, Segundo JP, Nomura T, Stiber MD. (1994). Jpn J Health Phys. 72

Schuster HG. (1989). Deterministic Chaos.

Stoer J, Bulirsch R. (1991). Introduction to Numerical Analysis.

Tiesinga PHE. (2002). Phys Rev E. 65

Wolf A, Swift J, Swinney H, Vastano J. (1984). Determining Lyapunov exponents from a time series Physica D. 16

Yoshizawa S et al. (1987). Phys Lett A. 123

References and models that cite this paper

Gangal H, Dar G. (2914). Mode locking, chaos and bifurcations in Hodgkin-Huxley neuron forced by sinusoidal current Chaotic Modeling and Simulation (CMSIM). 3

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.