“ … Using simulations and experiments in rat hippocampal neurons, we show here that pairs of neurons receiving correlated input also exhibit correlations arising from precise spike-time synchronization. Contrary to rate comodulation, spike-time synchronization is unaffected by firing rate, thus enabling synchrony- and rate-based coding to operate independently. The type of output correlation depends on whether intrinsic neuron properties promote integration or coincidence detection: “ideal” integrators (with spike generation sensitive to stimulus mean) exhibit rate comodulation, whereas ideal coincidence detectors (with spike generation sensitive to stimulus variance) exhibit precise spike-time synchronization. … Our results explain how different types of correlations arise based on how individual neurons generate spikes, and why spike-time synchronization and rate comodulation can encode different stimulus properties. Our results also highlight the importance of neuronal properties for population-level coding insofar as neural networks can employ different coding schemes depending on the dominant operating mode of their constituent neurons. “
Model Type: Neuron or other electrically excitable cell
Region(s) or Organism(s): Generic
Cell Type(s): Hodgkin-Huxley neuron; Abstract Morris-Lecar neuron
Model Concept(s): Synchronization; Noise Sensitivity
Simulation Environment: NEURON (web link to model); Python (web link to model)
Implementer(s): Hong, Sungho [shhong at oist.jp]
References:
Hong S, Ratté S, Prescott SA, De Schutter E. (2012). Single neuron firing properties impact correlation-based population coding. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32 [PubMed]