Feature integration drives probabilistic behavior in Fly escape response (von Reyn et al 2017)


von Reyn CR et al. (2017). Feature Integration Drives Probabilistic Behavior in the Drosophila Escape Response. Neuron. 94 [PubMed]

See more from authors: von Reyn CR · Nern A · Williamson WR · Breads P · Wu M · Namiki S · Card GM

References and models cited by this paper

Allen MJ, Godenschwege TA, Tanouye MA, Phelan P. (2006). Making an escape: development and function of the Drosophila giant fibre system. Seminars in cell & developmental biology. 17 [PubMed]

Aso Y et al. (2014). The neuronal architecture of the mushroom body provides a logic for associative learning. eLife. 3 [PubMed]

Aso Y et al. (2014). Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife. 3 [PubMed]

Baines RA, Uhler JP, Thompson A, Sweeney ST, Bate M. (2001). Altered electrical properties in Drosophila neurons developing without synaptic transmission. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Brainard D, Kleiner M, Pelli D . (2007). What's new in Psychtoolbox-3? Perception. 36

Brainard DH. (1997). The Psychophysics Toolbox. Spatial vision. 10 [PubMed]

Brand AH, Perrimon N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development (Cambridge, England). 118 [PubMed]

Card G, Dickinson M. (2008). Performance trade-offs in the flight initiation of Drosophila. The Journal of experimental biology. 211 [PubMed]

Card G, Dickinson MH. (2008). Visually mediated motor planning in the escape response of Drosophila. Current biology : CB. 18 [PubMed]

Deco G, Rolls ET. (2005). Attention, short-term memory, and action selection: a unifying theory. Progress in neurobiology. 76 [PubMed]

Dunn TW et al. (2016). Neural Circuits Underlying Visually Evoked Escapes in Larval Zebrafish. Neuron. 89 [PubMed]

Enroth-Cugell C, Robson JG. (1966). The contrast sensitivity of retinal ganglion cells of the cat. The Journal of physiology. 187 [PubMed]

Ewert JP. (1976). The visual system of the toad: Behavioral and physiological studies on a pattern recognition system The Amphibian Visual System: A Multidisciplinary Approach.

Fayyazuddin A, Zaheer MA, Hiesinger PR, Bellen HJ. (2006). The nicotinic acetylcholine receptor Dalpha7 is required for an escape behavior in Drosophila. PLoS biology. 4 [PubMed]

Fetsch CR, DeAngelis GC, Angelaki DE. (2013). Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons. Nature reviews. Neuroscience. 14 [PubMed]

Field DT, Wann JP. (2005). Perceiving time to collision activates the sensorimotor cortex. Current biology : CB. 15 [PubMed]

Fischbach KF, Dittrich APM. (1989). The optic lobe of Drosophila- Melanogaster 0.1. A Golgi analysis of wild-type structure Cell Tissue Res.. 258

Fotowat H, Fayyazuddin A, Bellen HJ, Gabbiani F. (2009). A novel neuronal pathway for visually guided escape in Drosophila melanogaster. Journal of neurophysiology. 102 [PubMed]

Fotowat H, Harrison RR, Gabbiani F. (2011). Multiplexing of motor information in the discharge of a collision detecting neuron during escape behaviors. Neuron. 69 [PubMed]

Gabbiani F, Krapp HG, Koch C, Laurent G. (2002). Multiplicative computation in a visual neuron sensitive to looming. Nature. 420 [PubMed]

Gabbiani F, Krapp HG, Laurent G. (1999). Computation of object approach by a wide-field, motion-sensitive neuron. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Glantz RM. (1974). Defense reflex and motion detector responsiveness to approaching targets- motion detector trigger to defense reflex pathway J. Comp. Physiol.. 95

Gouwens NW, Wilson RI. (2009). Signal propagation in Drosophila central neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

HUBEL DH, WIESEL TN. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of physiology. 160 [PubMed]

Hatsopoulos N, Gabbiani F, Laurent G. (1995). Elementary computation of object approach by wide-field visual neuron. Science (New York, N.Y.). 270 [PubMed]

Herberholz J, Marquart GD. (2012). Decision Making and Behavioral Choice during Predator Avoidance. Frontiers in neuroscience. 6 [PubMed]

Jenett A et al. (2012). A GAL4-driver line resource for Drosophila neurobiology. Cell reports. 2 [PubMed]

Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A. (2010). ON and OFF pathways in Drosophila motion vision. Nature. 468 [PubMed]

Joesch M, Weber F, Eichner H, Borst A. (2013). Functional specialization of parallel motion detection circuits in the fly. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Johns DC, Marx R, Mains RE, O'Rourke B, Marbán E. (1999). Inducible genetic suppression of neuronal excitability. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

King SM, Cowey A. (1992). Defensive responses to looming visual stimuli in monkeys with unilateral striate cortex ablation. Neuropsychologia. 30 [PubMed]

Klapoetke NC et al. (2014). Independent optical excitation of distinct neural populations. Nature methods. 11 [PubMed]

Lai SL, Lee T. (2006). Genetic mosaic with dual binary transcriptional systems in Drosophila. Nature neuroscience. 9 [PubMed]

Lehnert BP, Baker AE, Gaudry Q, Chiang AS, Wilson RI. (2013). Distinct roles of TRP channels in auditory transduction and amplification in Drosophila. Neuron. 77 [PubMed]

Lettvin JY, Mcculloch WS, Maturana HR, Pitts WH. (1959). What the frog's eye tells the frog's brain Proceedings Of The Institute Of Radio Engineers. 47

Liu YJ, Wang Q, Li B. (2011). Neuronal responses to looming objects in the superior colliculus of the cat. Brain, behavior and evolution. 77 [PubMed]

Merigan WH, Maunsell JH. (1993). How parallel are the primate visual pathways? Annual review of neuroscience. 16 [PubMed]

Mu L, Ito K, Bacon JP, Strausfeld NJ. (2012). Optic glomeruli and their inputs in Drosophila share an organizational ground pattern with the antennal lobes. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32 [PubMed]

Nakagawa H, Hongjian K. (2010). Collision-sensitive neurons in the optic tectum of the bullfrog, Rana catesbeiana. Journal of neurophysiology. 104 [PubMed]

Nassi JJ, Callaway EM. (2009). Parallel processing strategies of the primate visual system. Nature reviews. Neuroscience. 10 [PubMed]

Nern A, Pfeiffer BD, Rubin GM. (2015). Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proceedings of the National Academy of Sciences of the United States of America. 112 [PubMed]

Ohyama T et al. (2015). A multilevel multimodal circuit enhances action selection in Drosophila. Nature. 520 [PubMed]

Oliva D, Medan V, Tomsic D. (2007). Escape behavior and neuronal responses to looming stimuli in the crab Chasmagnathus granulatus (Decapoda: Grapsidae). The Journal of experimental biology. 210 [PubMed]

Oliva D, Tomsic D. (2014). Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice. Journal of neurophysiology. 112 [PubMed]

Orban GA, Kennedy H, Maes H. (1981). Response to movement of neurons in areas 17 and 18 of the cat: velocity sensitivity. Journal of neurophysiology. 45 [PubMed]

Otsuna H, Ito K. (2006). Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. The Journal of comparative neurology. 497 [PubMed]

Panser K et al. (2016). Automatic Segmentation of Drosophila Neural Compartments Using GAL4 Expression Data Reveals Novel Visual Pathways. Current biology : CB. 26 [PubMed]

Peek MY, Card GM. (2016). Comparative approaches to escape. Current opinion in neurobiology. 41 [PubMed]

Pelli DG. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial vision. 10 [PubMed]

Peng H et al. (2011). BrainAligner: 3D registration atlases of Drosophila brains. Nature methods. 8 [PubMed]

Pfeiffer BD et al. (2008). Tools for neuroanatomy and neurogenetics in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 105 [PubMed]

Pfeiffer BD et al. (2010). Refinement of tools for targeted gene expression in Drosophila. Genetics. 186 [PubMed]

Pfeiffer BD, Truman JW, Rubin GM. (2012). Using translational enhancers to increase transgene expression in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 109 [PubMed]

Phelan P et al. (2008). Molecular mechanism of rectification at identified electrical synapses in the Drosophila giant fiber system. Current biology : CB. 18 [PubMed]

Preuss T, Osei-Bonsu PE, Weiss SA, Wang C, Faber DS. (2006). Neural representation of object approach in a decision-making motor circuit. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Pérez-Gómez A et al. (2015). Innate Predator Odor Aversion Driven by Parallel Olfactory Subsystems that Converge in the Ventromedial Hypothalamus. Current biology : CB. 25 [PubMed]

Rind FC, Simmons PJ. (1997). Responses to object approach by a wide field visual neurone, the LGMD2 of the locust: Characterization and image cues J. Comp. Physiol.. 180

Sanes JR, Zipursky SL. (2010). Design principles of insect and vertebrate visual systems. Neuron. 66 [PubMed]

Schilling T, Borst A. (2015). Local motion detectors are required for the computation of expansion flow-fields. Biology open. 4 [PubMed]

Schindelin J et al. (2012). Fiji: an open-source platform for biological-image analysis. Nature methods. 9 [PubMed]

Serbe E, Meier M, Leonhardt A, Borst A. (2016). Comprehensive Characterization of the Major Presynaptic Elements to the Drosophila OFF Motion Detector. Neuron. 89 [PubMed]

Shinomiya K et al. (2014). Candidate neural substrates for off-edge motion detection in Drosophila. Current biology : CB. 24 [PubMed]

Strausfeld NJ, Bassemir UK. (1983). Cobalt-coupled neurons of a giant fibre system in Diptera. Journal of neurocytology. 12 [PubMed]

Strausfeld NJ, Okamura JY. (2007). Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents. The Journal of comparative neurology. 500 [PubMed]

Strausfeld NJ, Sinakevitch I, Okamura JY. (2007). Organization of local interneurons in optic glomeruli of the dipterous visual system and comparisons with the antennal lobes. Developmental neurobiology. 67 [PubMed]

Sun H, Frost BJ. (1998). Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons. Nature neuroscience. 1 [PubMed]

Takemura SY et al. (2013). A visual motion detection circuit suggested by Drosophila connectomics. Nature. 500 [PubMed]

Takemura SY et al. (2011). Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway. Current biology : CB. 21 [PubMed]

Tanji J. (2001). Sequential organization of multiple movements: involvement of cortical motor areas. Annual review of neuroscience. 24 [PubMed]

Tuthill JC, Nern A, Holtz SL, Rubin GM, Reiser MB. (2013). Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron. 79 [PubMed]

Wang Y, Frost BJ. (1992). Time to collision is signalled by neurons in the nucleus rotundus of pigeons. Nature. 356 [PubMed]

Wu M et al. (2016). Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. eLife. 5 [PubMed]

Wässle H. (2004). Parallel processing in the mammalian retina. Nature reviews. Neuroscience. 5 [PubMed]

de Vries SE, Clandinin TR. (2012). Loom-sensitive neurons link computation to action in the Drosophila visual system. Current biology : CB. 22 [PubMed]

von Reyn CR et al. (2014). A spike-timing mechanism for action selection. Nature neuroscience. 17 [PubMed]

References and models that cite this paper

Ache JM et al. (2019). Neural Basis for Looming Size and Velocity Encoding in the Drosophila Giant Fiber Escape Pathway. Current biology : CB. 29 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.