Conductance-based model of rodent thoracic sympathetic postganglionic neuron (McKinnon et al 2019)

"Thoracic sympathetic postganglionic neurons (tSPNs) represent the final neural output for control of vasomotor and thermoregulatory function. We used whole-cell recordings and computational modeling to provide broad insight on intrinsic cellular mechanisms controlling excitability and capacity for synaptic integration. Compared to past intracellular recordings using microelectrode impalement, we observed dramatically higher membrane resistivity with primacy in controlling enhanced tSPN excitability and recruitment via synaptic integration. Compared to reported phasic firing, all tSPNs fire repetitively and linearly encode injected current magnitude to firing frequency over a broad range. Modeling studies suggest microelectrode impalement injury accounts for differences in tSPN properties previously observed. Overall, intrinsic tSPN excitability plays a much greater role in the integration and maintenance of sympathetic output than previously thought."

Model Type: Neuron or other electrically excitable cell

Currents: I A; I K; I Na, leak; I h; I M; I K,Ca; I L high threshold

Simulation Environment: Python

Implementer(s): Prinz, Astrid [astrid.prinz at]; Tian, Kun [io.kuntian at]


McKinnon ML et al. (2019). Dramatically Amplified Thoracic Sympathetic Postganglionic Excitability and Integrative Capacity Revealed with Whole-Cell Patch-Clamp Recordings. eNeuro. 6 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.