Sleep deprivation in the ascending arousal system (Phillips & Robinson 2008)


"A physiologically based quantitative model of the human ascending arousal system is used to study sleep deprivation after being calibrated on a small set of experimentally based criteria. The model includes the sleep–wake switch of mutual inhibition between nuclei which use monoaminergic neuromodulators, and the ventrolateral preoptic area. The system is driven by the circadian rhythm and sleep homeostasis. We use a small number of experimentally derived criteria to calibrate the model for sleep deprivation, then investigate model predictions for other experiments, demonstrating the scope of application. ... The form of the homeostatic drive suggests that periods of wake during recovery from sleep deprivation are phases of relative recovery, in the sense that the homeostatic drive continues to converge toward baseline levels. This undermines the concept of sleep debt, and is in agreement with experimentally restricted recovery protocols. Finally, we compare our model to the two-process model, and demonstrate the power of physiologically based modeling by correctly predicting sleep latency times following deprivation from experimental data. "

Model Concept(s): Circadian Rhythms; Temporal Pattern Generation; Sleep; Activity Patterns; Oscillations; Homeostasis

Simulation Environment: CellML (web link to model)

References:

Phillips AJ, Robinson PA. (2008). Sleep deprivation in a quantitative physiologically based model of the ascending arousal system. Journal of theoretical biology. 255 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.