"Computational models of ion channels represent the building blocks of conductance-based, biologically inspired models of neurons and neural networks. Ion channels are still widely modelled by means of the formalism developed by the seminal work of Hodgkin and Huxley (HH), although the electrophysiological features of the channels are currently known to be better fitted by means of kinetic Markov-type models. The present study is aimed at showing why simplified Markov-type kinetic models are more suitable for ion channels modelling as compared to HH ones, and how a manual optimization process can be rationally carried out for both. ..."
Model Type: Channel/Receptor
Currents: I Sodium
Genes: Nav1.5 SCN5A
Model Concept(s): Markov-type model
Simulation Environment: NEURON; Python
Implementer(s): Carannante, Ilaria [ilariac at kth.se]; Balbi, Pietro [piero.balbi at fsm.it]; Andreozzi, Emilio [emilio.andreozzi at unina.it]
References:
Andreozzi E, Carannante I, D'Addio G, Cesarelli M, Balbi P. (2019). Phenomenological models of NaV1.5. A side by side, procedural, hands-on comparison between Hodgkin-Huxley and kinetic formalisms Scientific reports. 9 [PubMed]