Kesten and Langevin synaptic size fluctuation simulator (Hazan & Ziv 2020)


Sizes of glutamatergic synapses vary tremendously, even when formed on the same neuron. This diversity is commonly thought to reflect the outcome of activity-dependent forms of synaptic plasticity, yet activity-independent processes might also play some part. In this paper we show that in neurons with no history of activity whatsoever, synaptic sizes are no less diverse. We show that this diversity is the product of activity-independent size fluctuations, which are sufficient to generate a full repertoire of synaptic sizes at correct proportions. This simulator shows how synaptic size fluctuations governed by a stochastic process known as a Kesten process (as well as a specific form of a non-linear Langevin process) can give rise to this size diversity.

Model Type: Synapse

Model Concept(s): Stochastic simulation; Synaptic noise; Kesten Process ; Langevin process

Simulation Environment: QBasic/QuickBasic/Turbo Basic/VBA

Implementer(s): Ziv, Noam [noamz at netvision.net.il]

References:

Hazan L, Ziv NE. (2020). Activity dependent and independent determinants of synaptic size diversity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 40 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.