Brainstem circuits controlling locomotor frequency and gait (Ausborn et al 2019)

"A series of recent studies identified key structures in the mesencephalic locomotor region and the caudal brainstem of mice involved in the initiation and control of slow (exploratory) and fast (escape-type) locomotion and gait. However, the interactions of these brainstem centers with each other and with the spinal locomotor circuits are poorly understood. Previously we suggested that commissural and long propriospinal interneurons are the main targets for brainstem inputs adjusting gait (Danner et al., 2017). Here, by extending our previous model, we propose a connectome of the brainstem-spinal circuitry and suggest a mechanistic explanation of the operation of brainstem structures and their roles in controlling speed and gait. We suggest that brainstem control of locomotion is mediated by two pathways, one controlling locomotor speed via connections to rhythm generating circuits in the spinal cord and the other providing gait control by targeting commissural and long propriospinal interneurons."

Model Type: Connectionist Network

Region(s) or Organism(s): Brainstem

Model Concept(s): Posture and locomotion

Simulation Environment: Python (web link to model)

Implementer(s): Ausborn, Jessica [jessica.ausborn at]; Danner, Simon M [simon.danner at]


Ausborn J, Shevtsova NA, Caggiano V, Danner SM, Rybak IA. (2019). Computational modeling of brainstem circuits controlling locomotor frequency and gait. eLife. 8 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.