I A in Kenyon cells resemble Shaker currents (Pelz et al 1999)


Cultured Kenyon cells from the mushroom body of the honeybee, Apis mellifera, show a voltage-gated, fast transient K1 current that is sensitive to 4-aminopyridine, an A current. The kinetic properties of this A current and its modulation by extracellular K1 ions were investigated in vitro with the whole cell patch-clamp technique. The A current was isolated from other voltage-gated currents either pharmacologically or with suitable voltage-clamp protocols. Hodgkin- and Huxley-style mathematical equations were used for the description of this current and for the simulation of action potentials in a Kenyon cell model. The data of the A current were incorporated into a reduced computational model of the voltage-gated currents of Kenyon cells. In addition, the model contained a delayed rectifier K current, a Na current, and a leakage current. The model reproduces several experimental features and makes predictions. See paper for details and results.

Model Type: Neuron or other electrically excitable cell

Cell Type(s): Honeybee kenyon cell

Currents: I Na,t; I A; I K

Model Concept(s): Ion Channel Kinetics; Parameter Fitting; Action Potentials; Invertebrate

Simulation Environment: SNNAP

Implementer(s): Baxter, Douglas

References:

Pelz C, Jander J, Rosenboom H, Hammer M, Menzel R. (1999). IA in Kenyon cells of the mushroom body of honeybees resembles shaker currents: kinetics, modulation by K+, and simulation. Journal of neurophysiology. 81 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.