Connor CE, Gallant JL, Preddie DC, Van Essen DC. (1996). Responses in area V4 depend on the spatial relationship between stimulus and attention. Journal of neurophysiology. 75 [PubMed]
Cooley JW, Connor CE. (1965). An algorithm for the machine calculation of complex Fourier series Math Comput. 19
Cox DD, Meier P, Oertelt N, DiCarlo JJ. (2005). 'Breaking' position-invariant object recognition. Nature neuroscience. 8 [PubMed]
Dill M, Fahle M. (1998). Limited translation invariance of human visual pattern recognition. Perception & psychophysics. 60 [PubMed]
Dougherty RF et al. (2003). Visual field representations and locations of visual areas V1/2/3 in human visual cortex. Journal of vision. 3 [PubMed]
Fukuda Y, Sugimoto T, Shirokawa T. (1982). Strain differences in quantitative analysis of the rat optic nerve. Experimental neurology. 75 [PubMed]
Hudson PT, van den Herik HJ, Postma EO. (1997). SCAN: A Scalable Model of Attentional Selection. Neural networks : the official journal of the International Neural Network Society. 10 [PubMed]
Hughes A, Wassle H. (1976). The cat optic nerve: fibre total count and diameter spectrum. The Journal of comparative neurology. 169 [PubMed]
Ito M, Fujita I, Tanaka K, Kobatake E, Cheng K. (1993). Serial processing of visual object-features in the posterior and anterior parts of the inferotemporal cortex Brain mechanisms of perception and memory: From neuron to behaviour.
Lucke J. (2005). Dynamics of cortical columns-sensitive decision making Proc ICANN LNCS. 3696
Lücke J, von der Malsburg C. (2004). Rapid processing and unsupervised learning in a model of the cortical macrocolumn. Neural computation. 16 [PubMed]
Moran J, Desimone R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science (New York, N.Y.). 229 [PubMed]
Murray SO, Boyaci H, Kersten D. (2006). The representation of perceived angular size in human primary visual cortex. Nature neuroscience. 9 [PubMed]
Obermayer K, Blasdel GG. (1997). Singularities in primate orientation maps. Neural computation. 9 [PubMed]
Olshausen B, Van_essen DC, Anderson CH, Gallant J. (1991). Pattern recognition, attention, and information bottlenecks in the primate visual system Proceedings of the SPIE Conference on Visual Information Processing: From Neurons to Chips. 1473
Olshausen BA, Anderson CH, Van Essen DC. (1993). A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. The Journal of neuroscience : the official journal of the Society for Neuroscience. 13 [PubMed]
Olshausen BA, Field DJ. (1997). Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision research. 37 [PubMed]
Oram MW, Perrett DI. (1994). Modeling visual recognition from neurobiological constraints Neural Networks. 7
Perkel DJ, Bullier J, Kennedy H. (1986). Topography of the afferent connectivity of area 17 in the macaque monkey: a double-labelling study. The Journal of comparative neurology. 253 [PubMed]
Pitts W, Mcculloch WS. (1947). How we know universals. Bull Math Biophys. 9
Potts AM et al. (1972). Morphology of the primate optic nerve. I. Method and total fiber count. Investigative ophthalmology. 11 [PubMed]
Rager G, Rager U. (1978). Systems-matching by degeneration. I. A quantitative electron microscopic study of the generation and degeneration of retinal ganglion cells in the chicken. Experimental brain research. 33 [PubMed]
Schwartz EL. (1977). Spatial mapping in the primate sensory projection: analytic structure and relevance to perception. Biol Cybern. 25
Tanigawa H, Wang Q, Fujita I. (2005). Organization of horizontal axons in the inferior temporal cortex and primary visual cortex of the macaque monkey. Cerebral cortex (New York, N.Y. : 1991). 15 [PubMed]
Wundrich IJ, von der Malsburg C, Würtz RP. (2004). Image representation by complex cell responses. Neural computation. 16 [PubMed]
von der Malsburg C et al. (1993). Distortion invariant object recognition in the dynamic link architecture IEEE Trans Computers. 42
von der Malsburg C, Zhu J. (2006). Maplets for correspondence-based object recognition. Neural Netw. 17