Allouche JP, Courbage M, Skordev G. (2001). Notes on cellular automata Cubo, Matematica Educacional. 3
Anderson JA. (1995). An introduction to neural networks.
Bagnoli F, Cecconi F, Flammini A, Vespignani A. (2003). Short period attractors and non-ergodic behavior in the deterministic fixed energy sand pile model Europhysics Letters. 63
Bak P, Tang C, Wiesenfeld K. (1988). Self-organized criticality. Physical review. A, General physics. 38 [PubMed]
Barabasi AL, Albert R. (1999). Emergence of scaling in random networks Science (New York, N.Y.). 286 [PubMed]
Barahona M, Pecora LM. (2005). Synchronization of oscillators in complex networks Chaos Compl Lett. 1
Beggs JM, Plenz D. (2003). Neuronal avalanches in neocortical circuits. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Blanchard P, Cessac B. (2000). What can we learn about self-organized criticality from dynamical systems theory? J Stat Phys. 98
Bollobas B. (1985). Random Graphs.
Burkitt AN, Clark GM. (2001). Synchronization of the neural response to noisy periodic synaptic input. Neural computation. 13 [PubMed]
Börgers C, Kopell N. (2003). Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural computation. 15 [PubMed]
Cessac B, Blanchard P, Krüger T. (2001). Lyapunov exponents and transport in the Zhang model of self-organized criticality. Physical review. E, Statistical, nonlinear, and soft matter physics. 64 [PubMed]
Chen D, Guo A, Eu S, Yang ZR. (1995). Self-organized criticality in a cellular automaton model of pulse-coupled integrate-and-fire neurons J Phys A: Math Gen. 28
Dhar D. (1990). Self-organized state of sand pile automaton models Phys Rev Lett. 64
Diaz-Guilera A, Giacometti A. (1998). Dynamical properties of the Zhang model of self-organized criticality Phys Rev E. 58
Dickman R. (2000). Paths to selforganized criticality Brazilian J Physics. 30
Dorogovtsev SN, Mendes JFF. (2003). Evolution of networks.
Edgar GA. (1992). Measure, topology, and fractal geometry.
Edgar GA, Golds J. (1999). A fractal dimension estimate for a graph-directed iterated function system of non-similarities Indiana Univ Math J. 48
Elger CE et al. (2000). Possible clinical and research applications of nonlinear EEG analysis in humans Chaos in Brain?.
Feng J, Brown D. (1998). Fixed-point attractor analysis for a class of neurodynamics Neural Comput. 10
Golomb D, Hansel D. (2000). The number of synaptic inputs and the synchrony of large, sparse neuronal networks. Neural computation. 12 [PubMed]
Hergarten S. (2002). Self-organized criticality in earth systems.
Hertz J, Krogh A, Palmer RG. (1991). Introduction to the Theory of Neural Computation..
Hopfield JJ, Brody CD. (2001). What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proceedings of the National Academy of Sciences of the United States of America. 98 [PubMed]
Huerta R, Lago-Fernandez LF, Corbacho FJ. (2005). Connection topology dependence of synchronization of neural assemblies on class 1 and 2 excitability. Neural Netw. 14
Hutchinson JE. (1981). Fractals and self similarity Indiana Univ Math J. 30
Jensen HJ. (1998). Self-organized criticality.
Kandel ER, Jessell TM, Schwartz JH. (2000). Principles of neural science (4th ed).
Kim D, Goh KI, Lee DS, Kahng B. (2003). Sandpile on scale-free networks Phys Rev Lett. 91
Kim D, Lee HY, Lee HW. (1998). Origin of synchronized traffic flow on highways and its dynamic phase transition Phys Rev Lett. 81
Kistler WM, Gerstner W. (2002). Spiking neuron models.
Lubeck S, Rajewsky N, Wolf DE. (2000). A deterministic sandpile automaton revisited Eur Phys J B. 13
Markosová M, Markos P. (1992). Analytical calculation of the attractor periods of deterministic sandpiles. Physical review. A, Atomic, molecular, and optical physics. 46 [PubMed]
Moynot O, Samuelides M, Dauce E, Pinaud O. (2001). Mean-field theory and synchronization in random recurrent neural networks Neural Processing Letters. 14
Newman ME, Strogatz SH, Watts DJ. (2001). Random graphs with arbitrary degree distributions and their applications. Physical review. E, Statistical, nonlinear, and soft matter physics. 64 [PubMed]
Nishikawa T, Motter AE, Lai YC, Hoppensteadt FC. (2003). Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Physical review letters. 91 [PubMed]
Perez CJ, Corral A, Diaz-guilera A. (1996). On self-organized criticality and synchronization in lattice models of coupled dynamical systems J Mod Phys B. 10
Tirozzi B, Albeverio S. (1997). An introduction to the mathematical theory of neural networks Fourth Granada Lectures in Computational Physics .
Trappenberg TP. (2002). Fundamentals of computational neuroscience.
Volk D. (2000). Spontaneous synchronization in a discrete neural network model Chaos in brain?.
Wang Y, Golubitsky M, Antonelli F, Dias APS. (2005). Patterns of synchrony in lattice dynamical systems Nonlinearity. 18
Zhang YC. (1989). Scaling theory of self-organized criticality. Physical review letters. 63 [PubMed]