Almeida LB. (1997). Multilayer perceptrons Handbookof neural computation.
Almeida LB. (2004). MISEP-linear and nonlinear ICA based on mutual information Signal Processing. 84
Amari S, Cichocki A, Yang HH. (1997). Information back propagation for blind separation of sources from nonlinear mixture Proc IEEE ICNN.
Amari S, Cichocki A, Yang HH. (1998). Information theoretic approach to blind separation of sources in non-linear mixture Signal Process. 64
Bell AJ, Sejnowski TJ. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural computation. 7 [PubMed]
Bishop CM, Svensen M, Williams CKI. (1998). GTM: The Generative Topographic Mapping Neural Comput. 10
Burel G. (1992). Blind separation of sources: A nonlinear neural algorithm Neural Netw. 5
Comon P. (1994). Independent component analysis, a new concept? Signal Processing. 36
Cowan JD, Lin JK, Grier DG. (1996). Source separation and density estimation by faithful equivariant SOM Advances in neural information processing systems. 9
Deco G, Brauer W. (1995). Nonlinear higher-order statistical decorrelation by volume-conserving neural architectures Neural Netw. 8
Herrmann M, Yang HH. (1996). Perspectives and limitations of self-organizing maps in blind separation of source signals Proc ICONIP.
Honkela A, Ilin A. (2004). Post nonlinear independent component analysis by variational Bayesian learning Proc ICA.
Huang DS. (1998). The local minima free condition of feedforward neural networks for outer-supervised learning IEEE Trans Systems Man Cybern. 28B
Hyvärinen A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE transactions on neural networks. 10 [PubMed]
Hyvärinen A, Pajunen P. (1999). Nonlinear independent component analysis: Existence and uniqueness results. Neural networks : the official journal of the International Neural Network Society. 12 [PubMed]
Jutten C, Achard S. (2005). Identifiability of post nonlinear mixtures IEEE Signal Process Lett. 12
Jutten C, Achard S, Ilin A. (2004). Bayesian versus constrained structure approaches for source separation in post nonlinear mixtures Proc IJCNN.
Jutten C, Babaie-zadeh M, Nayebi K. (2002). A geometric approach for separating post non-linear mixtures Proc Int Workshop EUSIPCO.
Jutten C, Parashiv-ionescu A, Bouvier G. (2002). Source separation based processing for integrated hall sensor arrays IEEE Sensors J. 2
Jutten C, Pham DT, Achard S. (2001). Blind source separation in post nonlinear mixtures Proc Intl Workshop Independent Component Analysis and Blind Signal Separation.
Jutten C, Sole-Casals J, Babaie-Zadeh M, Pham D. (2003). Improving algorithm speed in PNL mixture separation and Wiener system inversion Proc ICA.
Jutten C, Taleb A. (1997). Entropy optimization-application to blind source separation ICANN.
Jutten C, Taleb A. (1997). Nonlinear source separation: The post-nonlinear mixtures Proc ESANN.
Jutten C, Taleb A. (1999). Source separation in post-nonlinear mixtures IEEE Transaction On Signal Processing. 47
Jutten C, Taleb A, Olympieff S. (1998). Source separation in post nonlinear mixtures: An entropy-based algorithm Proc ESANN. 98
Jutten C, Zadeh MB, Hosseini S. (2004). Three easy ways for separating nonlinear mixtures? Signal Process. 84
Korenberg MJ, Hunter IW. (1986). The identification of nonlinear biological systems: LNL cascade models. Biological cybernetics. 55 [PubMed]
Larson LE. (1998). Radio frequency integrated circuit technology low-power wireless communications IEEE Personal Communications. 5
Lee SI, Batzoglou S. (2003). Application of independent component analysis to microarrays. Genome Biol. 4
Lee TW, Girolami M, Sejnowski TJ. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural computation. 11 [PubMed]
Lee TW, Koehler B, Orglmeister R. (1997). Blind separation of nonlinear mixing models IEEE International Workshop on Neural Networks for Signal Processing.
Maeda S, Song WJ, Ishii S. (2005). Nonlinear and noisy extension of independent component analysis: theory and its application to a pitch sensation model. Neural computation. 17 [PubMed]
Martinez D, Bray A. (2003). Nonlinear blind source separation using kernels. IEEE transactions on neural networks. 14 [PubMed]
Muller KR, Kawanabe M, Ziehe A, Harmeling S. (2003). Blind separation of post nonlinear mixtures using linearizing transformations and temporal decorrelation J Mach Learn Res. 4
Oja E, Hyvarinen A, Karunen J. (2001). Independent component analysis.
Pajunen P. (1996). Nonlinear blind source separation by self-organizing maps Proc ICONIP. 2
Pajunen P. (1998). Blind source separation using algorithmic information theory Neurocomputing. 22
Prakriya S, Hatzinakos D. (1995). Blind identification of LTI-ZMNL-LTI nonlinear channel models IEEE Trans Signal Process. 43
Taleb A. (2002). A generic framework for blind source separation in structured nonlinear models IEEE Trans Signal Process. 50
Valpola H. (2000). Nonlinear independent component analysis using ensemble learning: Theory Proc 2nd Intl Workshop on Independent Component Analysis and Blind Signal Separation.