Baschke T, Zito T, Wiskott L. (2007). Independent Slow Feature Analysis and Nonlinear Blind Source Separation Neural Comput. 19

See more from authors: Baschke T · Zito T · Wiskott L

References and models cited by this paper

Almeida LB. (2004). MISEP-linear and nonlinear ICA based on mutual information Signal Processing. 84

Amari S, Cichocki A, Yang H. (1995). Recurrent neural networks for blind separation of sources Proc Intl Symposium on Nonlinear Theory and Its Applications.

Amari S, Cichocki A, Yang HH. (1998). Information theoretic approach to blind separation of sources in non-linear mixture Signal Process. 64

Blaschke T, Berkes P, Wiskott L. (2006). What is the relation between slow feature analysis and independent component analysis? Neural computation. 18 [PubMed]

Cardoso JF. (2001). The three easy routes to independent component analysis: Contrasts and geometry Proc ICA2001.

Cardoso JF, Belouchrani A, Karim AM, Moulines E. (1997). A blind source separation technique using second-order statistics IEEE Trans Signal Processing. 45

Cardoso JF, Souloumiac A. (1996). Jacobi angles for simultaneous diagonalization SIAM J Mat Anal Appl. 17

Comon P. (1994). Independent component analysis, a new concept? Signal Processing. 36

Hyvärinen A, Pajunen P. (1999). Nonlinear independent component analysis: Existence and uniqueness results. Neural networks : the official journal of the International Neural Network Society. 12 [PubMed]

Jutten C, Babaie-zadeh M, Nayebi K. (2002). A geometric approach for separating post non-linear mixtures Proc Int Workshop EUSIPCO.

Jutten C, Hosseini S. (2003). On the separability of nonlinear mixtures of temporally correlated sources IEEE Signal Process Lett. 10

Jutten C, Karhunen J. (2003). Advances in nonlinear blind source separation Proc. of the 4th Int. Symp. on Independent Component Analysis and Blind Signal Separation .

Jutten C, Taleb A. (1997). Nonlinear source separation: The post-nonlinear mixtures Proc ESANN.

Jutten C, Taleb A. (1999). Source separation in post-nonlinear mixtures IEEE Transaction On Signal Processing. 47

Liu R, Tong L, Soon VC, Huang YF. (1991). Indeterminacy and identifiability of blind identification IEEE Trans On Circuits And Systems. 38

McCullagh P. (1987). Tensor methods in statistics.

Molgedey L, Schuster HG. (1994). Separation of a mixture of independent signals using time delayed correlations. Physical review letters. 72 [PubMed]

Muller KR, Kawanabe M, Ziehe A, Harmeling S. (2003). Blind separation of post nonlinear mixtures using linearizing transformations and temporal decorrelation J Mach Learn Res. 4

Muller KR, Kawanabe M, Ziehe A, Harmeling S. (2003). Kernel-based nonlinear blind source separation Neural Comput. 15

Muller KR, Ziehe A. (1998). TDSEP an efficient algorithm for blind separation using time structure Proc 8th Intl Conf Artif Neural Networks.

Taleb A. (2002). A generic framework for blind source separation in structured nonlinear models IEEE Trans Signal Process. 50

Wiskott L, Blaschke T. (2004). CuBICA: Independent component analysis by simultaneous third- and fourth-order cumulant diagonalization IEEE Trans Signal Processing. 52

Wiskott L, Sejnowski TJ. (2002). Slow feature analysis: unsupervised learning of invariances. Neural computation. 14 [PubMed]

Wiskott L, Sprekeler H, Zito T. (2007). Understanding slow feature analysis: A mathematical framework Humboldt University. Manuscript in preparation.

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.