Beer RD, Yamauchi BM. (1994). Sequential behavior and learning in evolved dynamical neural networks Adaptive Behav. 2
Floreano D, Miglino O, Mondada F, Nolfi S. (1994). Howto evolve autonomoussrobots: Different approaches in evolutionary robotics Proc 4th Intl Workshop Synthesis and Simulation of Living Systems.
Gers FA, Schmidhuber E. (2001). LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE transactions on neural networks. 12 [PubMed]
Gers FA, Schmidhuber J, Cummins F. (2000). Learning to forget: continual prediction with LSTM. Neural computation. 12 [PubMed]
Girosi F, Mukherjee S, Osuna E. (1997). Nonlinear prediction of chaotic time series using support vector machines Proc IEEE NNSP.
Gomez FJ. (2003). Robust nonlinear control through neuroevolution Unpublished doctoral dissertation, University of Texas at Austin.
Graves A, Schmidhuber J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural networks : the official journal of the International Neural Network Society. 18 [PubMed]
Hochreiter S. (1991). Untersuchungen zu dynamischen neuronalen Netzen Diplomathesis, Technische Universitat Munchen.
Hochreiter S, Schmidhuber J. (1997). Long short-term memory. Neural computation. 9 [PubMed]
Holland JH. (1975). Adapatation in natural and artificial systems.
Ishii K, van_der_Zant T, Beacanovic V, Ploger PG. (2004). Identification ofmotion with echo state network Proc IEEE Oceans.
Ishii K, van_der_Zant T, Beacanovic V, Ploger PG, Kobialka HU. (2004). Finding good echo state networks to control an underwater robot using evolutionary computations Proc 5th IFAC Symposium Intelligent Autonomous Vehicles.
Jaeger H, Haas H. (2004). Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science (New York, N.Y.). 304 [PubMed]
Jaeger W. (2004). The echo state approach to recurrent neural networks Available onlineat http:--www.faculty.iu-bremen.de-hjaeger-courses-SeminarSpring04-ESNStandardSlides.pdf.
Maass W. (2002). A fresh look at real-time computation in generic recurrent neural circuits Tech Rep Graz:Institute for Theoretical Computer Science.
Mackey MC, Glass L. (1977). Oscillation and chaos in physiological control systems. Science (New York, N.Y.). 197 [PubMed]
Maillard EP, Gueriot D. (1997). RBF neural network, basis functions and genetic algorithms IEEE Intl Conf Neural Networks.
Miglino O, Lund HH, Nolfi S. (1995). Evolving mobile robots in simulated and real environments. Artificial life. 2 [PubMed]
Miikkulainen R, Gomez F. (1999). Solving non-Markovian control tasks with neuroevolution Proc 16th Intl Joint Conf Artif Intel.
Miikkulainen R, Moriarty DE. (1996). Efficient reinforcement learning through symbiotic evolution Mach Learn. 22
Miller G, Todd P, Hedge S. (1989). Designing neural networks using genetic algorithms Proc 3rd Intl Conf Genetic Algorithms.
Moriarty DE. (1997). Symbiotic evolution of neural networks in sequential decision tasks PhD Thesis Department of Computer Science, University of Texas at Austin.
Pearlmutter BA. (1995). Gradient calculation for dynamic recurrent neural networks: A survey IEEE Trans Neural Networks. 6
Penrose R. (1955). A generalized inverse for matrices Proc Cambridge Philosophy Soci. 51
Potter MA, De_Jong KA. (1995). Evolving neural networks with collaborative species Proc 1995 Summer Computer Simulation Conference.
PĂ©rez-Ortiz JA, Gers FA, Eck D, Schmidhuber J. (2003). Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets. Neural networks : the official journal of the International Neural Network Society. 16 [PubMed]
Rechenberg I. (1973). Evolutionsstrategie Optimierung technischer Systeme nach Prinzipien der biologischen Evolution.
Robinson AJ, Fallside F. (1987). The utility driven dynamic error propagation network Tech Rep Cambridge University Engineering Department.
Rumelhart D, Mccleland J. (1986). Parallel Distributed Processing.
Salomon J, King S, Osborne M. (2002). Framewise phone classification using support vector machines Proc Intl Conf Spoken Language Process.
Schmidhuber J. (1990). Dynamische neuronale Netze und das fundamental eraumzeitliche Lernproblem Unpublished doctoral dissertation, Technische Universitat Munchen.
Schmidhuber J. (1992). A fixed size storage O(n3) time complexity learning algorithm for fully recurrent continually running networks Neural Comput. 4
Schmidhuber J, Gers F, Eck D. (2002). Learning nonregular languages: a comparison of simple recurrent networks and LSTM. Neural computation. 14 [PubMed]
Schmidhuber J, Gers FA, Schraudolph N. (2002). Learning precise timing with LSTM recurrent networks J Mach Learn Res. 3
Schmidhuber J, Gomez F. (2005). Evolving modular fast-weight networks for control Proc 15th Intl Conf Artif Neural Networks.
Schmidhuber J, Gomez FJ. (2005). Co-evolving recurrent neurons learn deep memory POMDPS Proc Genetic Evolutionary Computation Conference.
Schmidhuber J, Hochreiter S. (1997). LSTM can solve hard long time lag problems Advances in neural information processing systems. 9
Schmidhuber J, Hochreiter S, Bengio Y. (2001). Evaluating benchmark problems by random guessing A field guide to dynamical recurrent neural networks.
Schmidhuber J, Hochreiter S, Bengio Y, Frasconi P. (2001). Gradient flow in recurrent nets: The difficulty of learning long-term dependencies A field guide to dynamical recurrent neural networks.
Schmidhuber J, Wierstra D, Gagliolo M, Gomez F. (2006). Evolino for recurrent support vector machines Proc ESANN.
Schmidhuber J, Wierstra D, Gomez FJ. (2005). Evolino: Hybrid neuroevolution-optimal linear search for sequence prediction Proc 19th Intl Joint Conf Artif Intel.
Schmidhuber J, Wierstra D, Gomez FJ. (2005). Modeling non-linear dynamical systems with Evolino Proc GECCO.
Schwefel HP. (1977). Numerische Optimierung von Computer-Modellen.
Schwefel HP. (1995). Evolution and optimum seeking.
Shimodaira H, Noma KI, Nakai M, Sagayama S. (2002). Dynamic time alignment kernel in support vector machine Advances in neural information processing systems. 14
Sims K. (1994). Evolving virtual creatures Proc SIGGRAPH.
Sontag ED, Siegelmann HT. (1991). Turing computability with neural nets Appl Math Lett. 4
Vandewalle J, Suykens J. (2000). Recurrent least squares support vector machines IEEE Transactions On Circuits And Systems. 47
Vapnik V. (1995). The Nature of Statistical Learning Theory.
Vapnik V et al. (1997). Predicting time series with support vector machines: Proceedings of ICANN.
Werbos P. (1989). Generalization of backpropagation with applications to a recurrent gas market model Neural Networks. 1
Werbos PJ. (1974). Beyond regression: New tools for prediction and analysis in the behavioral sciences Unpublished doctoral dissertation.
Williams RJ. (1989). Complexity of exact gradient computation algorithms for recurrent neural networks Tech Rep Northeastern University College of Computer Science.
Yao X. (1993). A review of evolutionary artificial neural networks Intl J Intelligent Systems. 8