Albert JH, Johnson VE. (1999). Ordinal data modeling (Statistics for social science and public policy).
Chu W, Keerthi SS. (2005). New approaches to support vector ordinal regression Tech Rep Yahooff Research Labs.
Frank E, Hall M. (2001). A simple approach to ordinal classification Proc Euro Conf Mach Learn.
Hersh W, Buckley C, Leone T, Hickam D. (1994). Ohsumed: An interactive retrieval evaluation and new large test collection for research Proc 17th Ann ACM SIGIR Conf.
Jaakkola T, Srebro N, Rennie JDM. (2005). Maximum-margin matrix factorization Advances in neural information processing systems. 17
Joachims T. (1998). Text categorization with support vector machines: Learning with many relevant features Proc ECML 10th Euro Conf Mach Learn.
Keerthi SS, Bhattacharyya C, Shevade SK, Murthy KRK. (2001). Improvements to Platts SMO algorithm for SVM classifier design Neural Comput. 13
Keerthi SS, Gilbert EG. (2002). Convergence of a generalized SMO algorithm for SVM classifier design Mach Learn. 46
Levin A, Shashua A. (2002). Ranking with large margin principle: Two approaches Advances in neural information processing systems. 15
Mccallum A. (1998). Rainbow Available online at http:--www.cs.umass.edu-mccallum-bow-rainbow-.
Obermayer K, Graepel T, Herbrich R. (2000). Large margin rank boundaries for ordinal regression Advances in large margin classifiers.
Pfahringer B, Kramer S, Widmer G, Degroeve M. (2001). Prediction of ordinal classes using regression trees Fundamenta Informat. 47
Platt J. (1999). Fast training of support vector machines using sequential minimal optimization Advances in kernel methods: Support vector learning.
Roth D, Har-peled S. (2002). Constraint classification:A new approach to multiclass classification and ranking Advances in neural information processing systems. 15
Scholkopf B, Smola AJ. (2001). Learning with kernels: Support vector machines, regularization, optimization, and beyond.
Singer Y, Crammer K. (2001). Pranking with ranking Advances in neural information processing systems. 14
Vapnik V. (1995). The Nature of Statistical Learning Theory.