Billings SA, Lee KL. (2002). Nonlinear fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm. Neural networks : the official journal of the International Neural Network Society. 15 [PubMed]
De Moor B, Suykens JAK, Hoegaerts L, Vanderwalle J. (2004). A comparison of pruning algorithms for sparse least squares support vector machines Proc 11th Intl Conf Neural Inform Proc.
Duda RO, Hart PE. (1973). Pattern Classification and Scene Analysis.
Greville TNE, Ben-Israel A. (1977). Generalized inverses: Theory and applications.
Mercer J. (1909). Functions of positive and negative type and their connections tothe theory of integral equations Philos Trans Roy Soc. 209
Mika S. (2002). Kernel fisher discriminants Unpublished doctoral dissertation.
Muller KR, Ratsch G, Onoda T. (2001). Soft margins for AdaBoost Mach Learn. 42
Nair P, Choudhury A, Keane AJ. (2002). Some greedy learning algorithms for sparse regression and classification with Mercer kernels J Mach Learn Res. 3
Natarajan BK. (1995). Sparse approximate solutions to linear systems SIAM J Comput. 25
Poggio T, Rifkin R, Yeo G. (2003). Regularized least squares classification Advances in learning theory: methods, models, and applications.
Scholkopf B, Smola AJ. (2000). Sparse greedymatrix approximation for machine learning Proc 17th Intl Conf Mach Learn.
Scholkopf B, Smola AJ. (2001). Learning with kernels: Support vector machines, regularization, optimization, and beyond.
Van Gestel T et al. (2002). Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel Fisher discriminant analysis. Neural computation. 14 [PubMed]
Vandewalle J, Suykens JAK. (1999). Least squares support vector machine classifiers Neural Processing Letters. 9
Zhang Z, Mallat SG. (1993). Matching pursuits with time-frequency dictionaries IEEE Transactions On Signal Processing. 41
de Kruif BJ, de Vries TA. (2003). Pruning error minimization in least squares support vector machines. IEEE transactions on neural networks. 14 [PubMed]