Ahmed NU. (1970). Closure and completeness of Wieners orthogonal set Gn in the class L2( , B,) and its application to stochastic hereditary differential systems Information And Control. 17
Alper A. (1965). A consideration of the discrete Volterra series IEEE Trans Autom Contr. 3
Barrett JF. (1963). The use of functionals in the analysis of non-linear physical systems J Electron Control. 15
Boyd S, Chua LO. (1985). Fading memory and the problem of approximating nonlinear operators with Volterra series IEEE Trans Circuits Syst. 32
Brilliant MB. (1958). Theory of the analysis of nonlinear systems RLE Tech Rep 345 MIT.
Dodd TJ, Harrison RF. (2002). A new solution to Volterra series estimation Proc 2002 IFAC World Congress.
Franz MO, Gehler PV. (2006). Implicit Wiener Series. Part II: Regularised estimation MPI Tech Rep 148, Max-Planck Institute for Biological Cybernetics Tubingen Germany.
Frechet M. (1910). Sur les fonctionelles continues Annales Scientifiques De LEcoleNormale Superieure. 27
Giannakis GB, Serpedin E. (2001). A bibliography on nonlinear system identification Signal Processing. 81
Hille E, Phillips RS. (1957). Functional analysis and semi-groups.
Hyvärinen A, Hoyer P. (2000). Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural computation. 12 [PubMed]
Kailath T, Segall A. (1976). Orthogonal functionals of independent-increment processes IEEE Trans Inf Theory. 22
Korenberg MJ. (1983). Statistical identification of parallel cascades of linear and nonlinear systems Proc IFAC Symp Identification and System Parameter Estimation.
Korenberg MJ. (1991). Parallel cascade identification and kernel estimation for nonlinear systems. Annals of biomedical engineering. 19 [PubMed]
Korenberg MJ, Bruder SB, McIlroy PJ. (1988). Exact orthogonal kernel estimation from finite data records: extending Wiener's identification of nonlinear systems. Annals of biomedical engineering. 16 [PubMed]
Korenberg MJ, Hunter IW. (1990). The identification of nonlinear biological systems: Wiener kernel approaches. Annals of biomedical engineering. 18 [PubMed]
Lee YW, Schetzen M. (1965). Measurement of the Wiener kernels of a non-linear system by cross-correlation Int J Cont. 2
Liusternik L, Sobolev V. (1961). Elements of functional analysis.
Mathews VJ, Sicuranza GL. (2000). Polynomial signal processing.
Nowak R. (1998). Penalized least squares estimation of Volterra filters and higher order statistics IEEE Trans Signal Process. 46
Ogura H. (1972). Orthogonal functionals of the Poisson process IEEE Trans Inf Theory. 18
Palm G. (1978). On representation and approximation of nonlinear systems Biol Cybern. 31
Papoulis A. (1991). Probability, Random Variables, And Stochastic Processes.
Poggio T. (1975). On optimal nonlinear associative recall. Biological cybernetics. 19 [PubMed]
Poggio T, Palm G. (1977). Volterra representation and Wiener expansion validity and pitfalls Siam J Appl Math. 33
Poggio T, Palm G. (1978). Stochastic identification methods for nonlinear Systems: An extension of Wiener theory SIAM J Appl Math. 34
Prenter PM. (1970). A Weierstrass theorem for real, separable Hilbert spaces J Approx Theory. 3
Rugh WJ. (1981). Nonlinear system theory: The Volterra-Wiener approach.
Schetzen M. (1965). A theory of nonlinear system identification Intl J Control. 20
Schetzen M. (1980). The Volterra and Wiener theories of nonlinear systems.
Scholkopf B, Franz MO. (2004). Implicit estimation of Wiener series Proc IEEE Signal Process Society Workshop.
Scholkopf B, Franz MO. (2005). Implicit Wiener series for higher-order image analysis Advances in neural information processing systems. 17
Scholkopf B, Rasmussen CE, Franz MO, Kwon Y. (2004). Semi-supervised kernel regression using whitened function classes Pattern recognition Proc 26th DAGM Symposium.
Scholkopf B, Smola AJ. (2001). Learning with kernels: Support vector machines, regularization, optimization, and beyond.
Smola A et al. (1998). Support vector machine-reference manual Tech. Rep. TR CSD-TR-98-03.
Steinwart I. (2001). On the influence of the kernel on the consistency of support vector machines JMLR. 2
Vapnik VN. (1982). Estimation of dependencies based on empirical data.
Volterra V. (1887). Sopra le funzioni che dipendono de altre funzioni.
Volterra V. (1930). Theory of Functionals and of Integro-Differential Equations.
Wahba G. (1990). Splines models for observational data.
Wiener N. (1958). Nonlinear Problems in Random Theory.
Williams CKI, Rasmussen CE. (2006). Gaussian processes for machine learning.
Wray J, Green GGR. (1994). Calculation of the Volterra kernels of non-linear dynamic systems using an artificial neural network Biol Cybern. 71
Kovacic G, Tao L, Cai D, Shelley MJ. (2008). Theoretical analysis of reverse-time correlation for idealized orientation tuning dynamics. Journal of computational neuroscience. 25 [PubMed]