Buhlmann P. (2004). Boosting for high-dimensional linear models Tech Rep Mathematics Department of ETH Zurich.
Donoho DL. (1993). Unconditional bases are optimal bases for data compression and for statistical estimation Appl Computational Harmonic Anal. 1
Ge Y, Jiang W. (2005). On Consistency of Bayesian Inference with Mixtures of Logistic Regression Neural Comput. 18
Ghosal S. (1997). Normal approximation to the posterior distribution for generalized linear models with many covariates Math Methods Stat. 6
Ghosal S. (1999). Asymptotic normality of posterior distributions in high dimensional linear models Bernoulli. 5
Lee HK. (2000). Consistency of posterior distributions for neural networks. Neural networks : the official journal of the International Neural Network Society. 13 [PubMed]
Lee KE, Sha N, Dougherty ER, Vannucci M, Mallick BK. (2003). Gene selection: a Bayesian variable selection approach. Bioinformatics (Oxford, England). 19 [PubMed]
Nelder JA, Mccullagh P. (1989). Generalized linear models.
Ritov Y, Greenshtein E. (2004). Persistence in high-dimensional linear predictor selection and the virtue of overparameterization Bernoulli. 10
Rosenblatt F. (1962). Principles Of Neurodynamics.
Sha N et al. (2004). Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage. Biometrics. 60 [PubMed]
Smith M, Kohn R. (1996). Nonparametric regression using Bayesian variable selection J Econometrics. 75
Wasserman L. (1998). Asymptotic properties of nonparametric Bayesian procedures Practical nonparametric and semiparametric bayesian statistics.
Wasserman L, Shen X. (2001). Rates of convergence of posterior distributions Ann Statist. 29
Yang Y, Barron AR. (1998). An asymptotic property of model selection criteria IEEE Trans Information Theory. 44
Zhou X, Liu KY, Wong ST. (2004). Cancer classification and prediction using logistic regression with Bayesian gene selection. Journal of biomedical informatics. 37 [PubMed]
van_der_Vaart AW, Ghosal S, Ghosh JK. (2000). Convergence rates of posterior distributions Ann Statist. 28