Barnsley MF. (1988). Fractals everywhere.
Barreto Gde A, Araújo AF, Kremer SC. (2003). A taxonomy for spatiotemporal connectionist networks revisited: the unsupervised case. Neural computation. 15 [PubMed]
Bernaola-Galvan P, Roman-Roldan R, Oliver J. (1994). Entropic feature for sequence pattern through iteration function systems Pattern Recognition Lett. 15
Fiser A, Tusnády GE, Simon I. (1994). Chaos game representation of protein structures. Journal of molecular graphics. 12 [PubMed]
Hagenbuchner M, Sperduti A, Tsoi AC. (2003). A self-organizing map for adaptive processing of structured data. IEEE transactions on neural networks. 14 [PubMed]
Hammer B, Micheli A, Sperduti A, Strickert M. (2004). A general framework for unsupervised processing of structured data Neurocomputing. 57
Hammer B, Micheli A, Sperduti A, Strickert M. (2006). Recursive self-organizing network models. Neural Netw. 17
Hammer B, Strickert M. (2003). Neural gas for sequences Proc Workshop on Self-Organizing Maps.
Hammer B, Strickert M. (2005). Merge som for temporal data Neurocomputing. 64
Hammer B, Tino P. (2003). Recurrent neural networks with small weights implement definite memory machines Neural Comput. 15
Hammer B, Tino P. (2003). Architectural bias in recurrent neural networks-Fractal analysis Neural Comput. 15
Hao BL. (2000). Fractals from genomes exact solutions of a biology-inspired problem Physica A. 282
Horio K, Yamakawa T. (2001). Feedback self-organizing map and its application to spatio-temporal pattern classification Intl J Comput Intell Appl. 1
Jeffrey HJ. (1990). Chaos game representation of gene structure. Nucleic acids research. 18 [PubMed]
Kaski K, Varsta M, Heikkonen J, Koskela T. (1998). Recurrent SOM with local linear models in time series prediction 6th Euro Symposium Artif Neural Networks.
Kenyon R, Peres Y. (1996). Measures of full dimension on affine invariant sets Ergodic Theory And Dynamical System. 16
Kohonen T. (1982). Self-organized formation of topology correct feature maps Biol Cybern. 43
Kohonen T. (1990). The self-organizing map Proc IEEE. 78
Miikkulainen R, James DL. (1995). SARDNET: A self-organizing feature map for sequences Advances in neural information processing systems. 7
Oliver JL, Bernaola-Galván P, Guerrero-García J, Román-Roldán R. (1993). Entropic profiles of DNA sequences through chaos-game-derived images. Journal of theoretical biology. 160 [PubMed]
Principe J, Euliano N, Garani S. (2006). Principles and networks for self-organization in space-time. Neural Netw. 15
Schulz R, Reggia JA. (2004). Temporally asymmetric learning supports sequence processing in multi-winner self-organizing maps. Neural computation. 16 [PubMed]
Taylor JG, Chappell GJ. (1993). The temporal Kohonen map Neural Netw. 6
Tino P. (2002). Multifractal properties of Haos geometric representations of DNA sequences Physica A. 304
Tino P, Cernanský M, Benusková L. (2004). Markovian architectural bias of recurrent neural networks. IEEE transactions on neural networks. 15 [PubMed]
Tino P, Dorffner G. (2001). Predicting the future of discrete sequences from fractal representations of the past Mach Learn. 45
Tino P, Köteles M. (1999). Extracting finite-state representations from recurrent neural networks trained on chaotic symbolic sequences. IEEE transactions on neural networks. 10 [PubMed]
Verleysen M, Lee JA. (2006). Self-organizing maps with recursive neighborhood adaptation. Neural Netw. 15
Voegtlin T. (2002). Recursive self-organizing maps. Neural Netw. 15
Wiemer JC. (2003). The time-organized map algorithm: extending the self-organizing map to spatiotemporal signals. Neural computation. 15 [PubMed]
Yin H. (2002). ViSOM - a novel method for multivariate data projection and structure visualization. IEEE transactions on neural networks. 13 [PubMed]
Zhang S, Lee H, Hao BL. (2000). Fractals related to long DNA sequences and complete genomes Chaos, Solitons And Fractals. 11