Cardoso JF, Laheld B. (1996). Equivalent adaptive source separation. IEEE Trans Signal Proc. 44
Charles D, Fyfe C. (1998). Modelling multiple-cause structure using rectification constraints. Network (Bristol, England). 9 [PubMed]
Choi S, Lee JS, Lee DD, Lee DS. (2001). Application of nonnegative matrix factorization to dynamic positron emission tomography Proc Intl Conf Independent Component Analysis and Signal Separation.
Cichocki A, Amari SI. (2002). Adaptive blind signal and image processing.
Edelman A, Arias TA, Smith ST. (1998). The geometry of algorithms with orthogonality constraints SIAM J Matrix Anal Appl. 20
Fiori S. (2001). A theory for learning by weight flow on Stiefel-Grassman manifold Neural Comput. 13
Fyfe C. (1994). Positive weights in interneurons Neuralcomputing: Research and applications II. Proceedings of the Third Irish Neural Networks Conference. 1
Harpur GF. (1997). Low entropy coding with unsupervised neural networks Unpublished doctoral disseratation.
Henry RC. (2002). Multivariate receptor models current practice and future trends Chemometrics And Intelligent Laboratory Systems. 60
Lee DD, Seung HS. (1999). Learning the parts of objects by non-negative matrix factorization. Nature. 401 [PubMed]
Oja E. (1983). Subspace methods of pattern recognition.
Oja E. (1997). The nonlinear PCA learning rule and signal separation: Mathematical analysis Neurocomputing. 17
Oja E. (1999). The nonlinear PCA learning rule in independent component analysis Proc ICA.
Oja E, Hyvarinen A, Karunen J. (2001). Independent component analysis.
Oja E, Plumbley MD. (2003). Blind separation of positive sources using nonnegative ICA Proc Intl Workshop on Independent Component Analysis and Signal Separation.
Oja E, Plumbley MD. (2004). A non-negative PCA algorithm for independent component analysis IEEE Trans Neural Networks. 15
Paatero P, Tapper U. (1994). Positive matrix factorization: A non-negative factor model with optimal utilization of error Environmetrics. 5
Plumbley MD. (2002). Conditions for nonnegative independent component analysis IEEE Signal Processing Lett. 9
Plumbley MD. (2003). Algorithms for non-negative independent component analysis IEEE Trans Neural Networks. 14
Sajda P, Spence C, Ziehe A, Parra L, Muller KR . (2000). Unmixing hyperspectral data Advances in neural information processing systems. 12
Tsuge S, Shishibori M, Kuroiwa S, Kita K. (2001). Dimensionality reduction using non-negative matrix factorization for information retrieval IEEE Intl Conf Systems Man Cybernet. 2
Xu L. (1992). Least mean square error reconstruction principle for self-organizing neural nets Neural Netw. 6