Theis FJ. (2004). A new concept for separability problems in blind source separation. Neural computation. 16 [PubMed]

See more from authors: Theis FJ

References and models cited by this paper

Amari S, Cichocki A. (2003). Adaptive blind signal and image processing: Learning algorithms and applications.

Bauer H. (1996). Probability theory.

Bell AJ, Sejnowski TJ. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural computation. 7 [PubMed]

Cardoso JF, Belouchrani A, Karim AM, Moulines E. (1997). A blind source separation technique using second-order statistics IEEE Trans Signal Processing. 45

Cardoso JF, Souloumiac A. (1993). Blind beamforming for non-gaussian signals Proc IEEE. 140

Comon P. (1994). Independent component analysis, a new concept? Signal Processing. 36

Darmois G. (1953). Analyse generale des liaisons stochastiques Rev Inst Internationale Statist. 21

Eriksson J, Koivunen V. (2003). Identifiability and separability of linear ica models revisited Proc ICA.

Hyvärinen A, Pajunen P. (1999). Nonlinear independent component analysis: Existence and uniqueness results. Neural networks : the official journal of the International Neural Network Society. 12 [PubMed]

Jutten C, Babaie-zadeh M, Nayebi K. (2002). A geometric approach for separating post non-linear mixtures Proc Int Workshop EUSIPCO.

Jutten C, Herault J. (1986). Space or time adaptive signal processing by neural network models Neural Networks for computing: Proc AIP Conf.

Jutten C, Taleb A. (1999). Source separation in post-nonlinear mixtures IEEE Transaction On Signal Processing. 47

Kagan A. (1986). New classes of dependent random variables and a generalization of the Darmois-Skitovitch theorem to several forms Theory Probab Appl. 33

Lang E, Habl M, Bauer C, Puntonet C, Rodriguez-alvarez M. (2001). Analyzing biomedical signals with probabilistic ICA and kernel-based source density estimation Information science innovations.

Lang E, Puntonet C, Theis F. (2003). Nonlinear geometric ICA Proc ICA.

Lewicki MS, Lee TW. (2000). The generalized gaussian mixture model using ICA Proc. International Workshop on Independent Component Analysis.

Lin J. (1998). Factorizing multivariate function classes Advances in neural information processing systems. 10

Liu R, Tong L, Soon VC, Huang YF. (1991). Indeterminacy and identifiability of blind identification IEEE Trans On Circuits And Systems. 38

Oja E, Hyvarinen A. (1997). A fast fixed-point algorithm for independent component analysis Neural Comput. 9

Oja E, Hyvarinen A, Karunen J. (2001). Independent component analysis.

Skitovitch V. (1953). On a property of the normal distribution DAN SSR. 89

Theis F, Gruber P. (2004). Separability of analytic postnonlinear blind source separation with bounded sources Proc ESANN.

Theis FJ, Jung A, Puntonet CG, Lang EW. (2003). Linear geometric ICA: fundamentals and algorithms. Neural computation. 15 [PubMed]

Yeredor A. (2000). Blind source separation via the second characteristic function Signal Processing. 80

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.