Baglama J. (2004). The irbleigs Matlab program for computing a few eigen values and eigenvectors of a large sparse hermitian matrix Available online at http:--www.math.uri.edu-jbaglama-.
Blake CL, Merz CJ. (1998). UCI Repository of Machine Learning Databases.
De Moor B, Vandewalle J, Suykens JAK, van_Gestel T, De_Bradanter J. (2002). Least squares support vector machines.
Girolami M, Rosipal R. (2001). An expectation-maximization approach to nonlinear component analysis Neural Comput. 13
Golub GH, van_Loan CF. (1996). Matrix computations.
Hoegaerts L et al. (2007). Efficiently updating and tracking the dominant kernel principal components. Neural networks : the official journal of the International Neural Network Society. 20 [PubMed]
Kim K, Scholkopf B, Franz MO. (2003). Kernel Hebbian algorithm for iterative kernel principal component analysis Tech Rep 109 Max Planck Institute Biologische Kybernetik.
Larsen RM. (2004). Propack software for large and sparse SVD calculations Available online at http:--sun.stanford.edu-rmunk-PROPACK-index.html.
Scholkopf B, Smola A, Muller KR. (1998). Nonlinear component analysis as a kernel eigenvalue problem Neural Comput. 10
Scholkopf B, Smola AJ. (2001). Learning with kernels: Support vector machines, regularization, optimization, and beyond.
Vandewalle J, Suykens JAK, Hoegaerts L, De_Lathauwer L. (2004). Efficiently updating and tracking the dominant kernel eigen space Proc 16th Intl Symposium Math Theory Networks and Systems.
Weiss Y. (1999). Segmentation using eigen vectors: A unifying view Proc IEEE Intl Conf Computer Vision.
Weiss Y, Jordan MI, Ng AY. (2002). On spectral clustering: Analysis and an algorithm Advances In Neural Information Processing Systems.