Gins G, Smets IY, Van Impe JF. (2008). Efficient tracking of the dominant eigenspace of a normalized kernel matrix. Neural computation. 20 [PubMed]

See more from authors: Gins G · Smets IY · Van Impe JF

References and models cited by this paper

Baglama J. (2004). The irbleigs Matlab program for computing a few eigen values and eigenvectors of a large sparse hermitian matrix Available online at http:--www.math.uri.edu-jbaglama-.

Blake CL, Merz CJ. (1998). UCI Repository of Machine Learning Databases.

De Moor B, Vandewalle J, Suykens JAK, van_Gestel T, De_Bradanter J. (2002). Least squares support vector machines.

Girolami M, Rosipal R. (2001). An expectation-maximization approach to nonlinear component analysis Neural Comput. 13

Golub GH, van_Loan CF. (1996). Matrix computations.

Hoegaerts L et al. (2007). Efficiently updating and tracking the dominant kernel principal components. Neural networks : the official journal of the International Neural Network Society. 20 [PubMed]

Kim K, Scholkopf B, Franz MO. (2003). Kernel Hebbian algorithm for iterative kernel principal component analysis Tech Rep 109 Max Planck Institute Biologische Kybernetik.

Larsen RM. (2004). Propack software for large and sparse SVD calculations Available online at http:--sun.stanford.edu-rmunk-PROPACK-index.html.

Scholkopf B, Smola A, Muller KR. (1998). Nonlinear component analysis as a kernel eigenvalue problem Neural Comput. 10

Scholkopf B, Smola AJ. (2001). Learning with kernels: Support vector machines, regularization, optimization, and beyond.

Vandewalle J, Suykens JAK, Hoegaerts L, De_Lathauwer L. (2004). Efficiently updating and tracking the dominant kernel eigen space Proc 16th Intl Symposium Math Theory Networks and Systems.

Weiss Y. (1999). Segmentation using eigen vectors: A unifying view Proc IEEE Intl Conf Computer Vision.

Weiss Y, Jordan MI, Ng AY. (2002). On spectral clustering: Analysis and an algorithm Advances In Neural Information Processing Systems.

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.