Archambeau C. (2005). Probabilistic models in noisy environments and their application to a visual prosthesis for the blind Unpublished doctoral dissertation, Universite Catholique de Louvain.
Besse P, Baccini A, deFalguerolles A. (1996). A L1-norm PCA and a heuristic approach Ordinal and symbolic data analysis.
Bishop C, Tipping M. (1999). Probabilistic principal component analysis J Roy Stat Soc B. 61
Black M, de_la_Torre F. (2001). Robust principal component analysis for computer vision Intl Conf Computer Vision. 52
Black M, de_la_Torre F. (2003). A framework for robust subspace learning Intl J Computer Vision. 54
Black MJ, Jepson A. (1996). EigenTracking: Robust matching and tracking of articulated objects using a view-based representation Proceedings of the Fourth European Conference on Computer Vision, ECCV96.
Dempster AP, Laird NM, Rubin DB. (1977). Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B. 39
Gao J, Kandola J, Gunn S. (2002). Adapting kernels by variational approach in SVM Lecture Notes On Artificial Intelligence. 2557
Gao JB, Guo Y, Kwan PW. (2006). Twin measure embedding: A unified framework for visualizing non-vectorial data in low dimensional spaces Research Rep Charles Sturt University.
Ghahramani Z, Beal M. (2000). Variational inference for Bayesian mixtures of factor analysers Advances in neural information processing systems. 12
Girosi F, Mukherjee S, Pontil M. (1998). On the noise model of support vector machine regression AI Memo 1651 AI Laboratory, MIT.
Hinton GE, Neal RM. (1998). A new view of the EM algorithm that justifies incremental, sparse and other variants Learning in graphical models.
Irani M. (1999). Multi-frame optical flow estimation using subspace constraints Proc Intl Conf Computer Vision.
Jolliffe IT. (2002). Principal component analysis (2nd ed).
Kanade T, Ke Q. (2001). A subspace approach to layer extraction Proc CVPR. 1
Kanade T, Ke Q. (2005). Robust L1 norm factorization in the presence of outliers and missing data by alternative convex programming Proc CVPR. 1
Kanade T, Tomasi C. (1992). Shape and motion from image streams under orthography: A factorization method Intl J Computer Vision. 9
Khan Z, Dellaert F. (2004). Robust generative subspace modelling: The subspace t distribution Tech Rep GIT-GVU-04-11 Georgia Institute of Technology.
Ng A. (2004). Feature selection, L1 vs. L2 regularization, and rotational invariance Proc Intl Conf Mach Learn.
Peel D, Mclachlan G. (2000). Robust mixture modelling using the t distribution Statistics And Computing. 10
Pentland A, Turk M. (1991). Eigen faces for recognition J Cogn Neurosci. 3
Ridder DD, Franc V. (2003). Robust subspace mixture models using t-distributions BMVC 2003: Proc 14th Brit Mach Vision Conf.
Roweis S, Vlassis N, Verbeek J. (2004). Nonlinear CCA and PCA by alignment of local models Advances in neural information processing systems. 16
Ruymagaart F. (1981). A robust principal component analysis J Multivariate Anal. 11
Tibshirani R. (1996). Regression shrinkage and selection via the LASSO J Roy Stat Soc B. 58
Tibshirani R, Hastie T, Zou H. (2004). Sparse principal component analysis Tech Rep Stanford University Statistics Department.
Tipping M, Lawrence N. (2005). Variational inference for Student-t models: Robust Bayesian interpolation and generalized component analysis Neurocomputing. 69
Tipping ME, Bishop CM. (1999). Mixtures of probabilistic principal component analyzers. Neural computation. 11 [PubMed]
Verbeek J. (2006). Learning nonlinear image manifolds by global alignment of local linear models. IEEE transactions on pattern analysis and machine intelligence. 28 [PubMed]
Verleysen M, Archambeau C, Delannay N. (2006). Robust probabilistic projections Proc 23rd Intl Conf Mach Learn.
Zhou D, He X, Ding C, Zha H. (2006). R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization Proc 23rd Intl Conf Mach Learn.