Amari S, Cichocki A. (2003). Adaptive blind signal and image processing: Learning algorithms and applications.
Ballard DH, Feldman JA. (1982). Connectionist models and their properties Cognit Sci. 6
Barlow H. (1989). Unsupervised learning Neural Comput. 1
Barlow H. (2001). Redundancy reduction revisited. Network (Bristol, England). 12 [PubMed]
Barlow HB. (1998). Guest editorial: Cerebral predictions Perception. 27
Bell AJ, Sejnowski TJ. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural computation. 7 [PubMed]
Dwork B. (1990). Generalized hypergeometric functions.
Etter DM, Cheng YF. (1987). System modeling using an adaptive delay filter IEEE Trans Circuits and Systems. 34
Fiori S. (2000). Blind signal processing by the adaptive activation function neurons. Neural networks : the official journal of the International Neural Network Society. 13 [PubMed]
Fiori S. (2001). A contribution to (neuromorphic) blind deconvolution by flexible approximated bayesian estimation Signal Processing. 81
Fiori S. (2001). Probability density function learning by unsupervised neurons. International journal of neural systems. 11 [PubMed]
Fiori S. (2002). Notes on Bell-Sejnowski PDF-matching neuron. Neural computation. 14 [PubMed]
Fiori S. (2003). Nonsymmetric PDF estimation by artificial neurons: Application to statistical characterization of reinforced composites IEEE Trans Neural Networks.
Fiori S, Biagiotti J, Torre L. (2003). Mechanical properties of polypropylene matrix composites reinforced with natural fibers: A statistical approach Polymer Composites.
Fiori S, Bucciarelli P. (2001). Probability density estimation using adaptive activation function neurons Neural Processing Lett. 13
Jutten C, Taleb A. (1997). Entropy optimization-application to blind source separation ICANN.
Kim YH, Lewis FL, Dawson DM. (1997). Hamilton-Jacobi-Bellman optimal design of functional link neural network controller for robot manipulator Proc 36th IEEE Conf Decision and Control. 2
Laughlin S. (1981). A simple coding procedure enhances a neuron's information capacity. Zeitschrift fur Naturforschung. Section C, Biosciences. 36 [PubMed]
Linsker R. (1992). Local synaptic rules suffice to maximize mutual information in a linear network Neural Comput. 4
Mackey MC, Glass L. (1977). Oscillation and chaos in physiological control systems. Science (New York, N.Y.). 197 [PubMed]
Mathews VJ. (1991). Adaptive polynomial filtering IEEE Signal Processing Magazine. 8
Mel BW. (1994). Information processing in dendritic trees. Neural Comput. 6
Roth Z, Baram Y. (1996). Multidimensional density shaping by sigmoids. IEEE transactions on neural networks. 7 [PubMed]
Saad D. (1999). On-line learning in neural networks.
Sandberg IW. (1998). Notes on uniform approximation of time-varying systems on finite time intervals IEEE Trans Circuits and Systems. 45
Spratling MW, Hayes GM. (2000). Learning synaptic clusters for nonlinear dendritic processing Neural Proc Letters. 11
Sudjianto A, Hassoun MH. (1994). Nonlinear Hebbian rule: A statistical interpretation Proc Intl Conf Neural Networks. 2
Yang Y, Barron AR. (1998). An asymptotic property of model selection criteria IEEE Trans Information Theory. 44
Yu Z, Yefang C. (1996). Adaptive control of dynamical systems using functional-link net Proc IEEE Intl Conf Industrial Technology.