Dedek K et al. (2001). Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proceedings of the National Academy of Sciences of the United States of America. 98 [PubMed]

See more from authors: Dedek K · Kunath B · Kananura C · Reuner U · Jentsch TJ · Steinlein OK

References and models cited by this paper
References and models that cite this paper

Lombardo J, Harrington MA. (2016). Nonreciprocal mechanisms in up- and downregulation of spinal motoneuron excitability by modulators of KCNQ/Kv7 channels. Journal of neurophysiology. 116 [PubMed]

Miceli F et al. (2013). Genotype-phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)7.2 potassium channel subunits. Proceedings of the National Academy of Sciences of the United States of America. 110 [PubMed]

Miceli F et al. (2015). Early-onset epileptic encephalopathy caused by gain-of-function mutations in the voltage sensor of Kv7.2 and Kv7.3 potassium channel subunits. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]

Miceli F et al. (2009). Neutralization of a unique, negatively-charged residue in the voltage sensor of K V 7.2 subunits in a sporadic case of benign familial neonatal seizures. Neurobiology of disease. 34 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.