Babadi B. (2005). Bursting as an effective relay mode in a minimal thalamic model. Journal of computational neuroscience. 18 [PubMed]
Broicher T et al. (2007). T-current related effects of antiepileptic drugs and a Ca2+ channel antagonist on thalamic relay and local circuit interneurons in a rat model of absence epilepsy. Neuropharmacology. 53 [PubMed]
Ermentrout GB, Terman DH. (2010). Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics. 35
Huertas MA, Groff JR, Smith GD. (2005). Feedback inhibition and throughput properties of an integrate-and-fire-or-burst network model of retinogeniculate transmission. Journal of computational neuroscience. 19 [PubMed]
Huertas MA, Smith GD. (2006). A multivariate population density model of the dLGN/PGN relay. Journal of computational neuroscience. 21 [PubMed]
Komarov M, Bazhenov M. (2016). Linking dynamics of the inhibitory network to the input structure. Journal of computational neuroscience. 41 [PubMed]
Rubin J, Terman D, Chow C. (2001). Localized bumps of activity sustained by inhibition in a two-layer thalamic network. Journal of computational neuroscience. 10 [PubMed]
Sotero RC, Trujillo-Barreto NJ, Iturria-Medina Y, Carbonell F, Jimenez JC. (2007). Realistically coupled neural mass models can generate EEG rhythms. Neural computation. 19 [PubMed]
Spreizer S, Aertsen A, Kumar A. (2019). From space to time: Spatial inhomogeneities lead to the emergence of spatiotemporal sequences in spiking neuronal networks. PLoS computational biology. 15 [PubMed]
Tiesinga PH, José JV. (2000). Synchronous clusters in a noisy inhibitory neural network. Journal of computational neuroscience. 9 [PubMed]
Tikidji-Hamburyan RA, MartÃnez JJ, White JA, Canavier CC. (2015). Resonant Interneurons Can Increase Robustness of Gamma Oscillations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]