Rinzel J, Terman D, Wang X, Ermentrout B. (1998). Propagating activity patterns in large-scale inhibitory neuronal networks. Science (New York, N.Y.). 279 [PubMed]

See more from authors: Rinzel J · Terman D · Wang X · Ermentrout B

References and models cited by this paper
References and models that cite this paper

Babadi B. (2005). Bursting as an effective relay mode in a minimal thalamic model. Journal of computational neuroscience. 18 [PubMed]

Broicher T et al. (2007). T-current related effects of antiepileptic drugs and a Ca2+ channel antagonist on thalamic relay and local circuit interneurons in a rat model of absence epilepsy. Neuropharmacology. 53 [PubMed]

Ermentrout GB, Terman DH. (2010). Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics. 35

Huertas MA, Groff JR, Smith GD. (2005). Feedback inhibition and throughput properties of an integrate-and-fire-or-burst network model of retinogeniculate transmission. Journal of computational neuroscience. 19 [PubMed]

Huertas MA, Smith GD. (2006). A multivariate population density model of the dLGN/PGN relay. Journal of computational neuroscience. 21 [PubMed]

Komarov M, Bazhenov M. (2016). Linking dynamics of the inhibitory network to the input structure. Journal of computational neuroscience. 41 [PubMed]

Rubin J, Terman D, Chow C. (2001). Localized bumps of activity sustained by inhibition in a two-layer thalamic network. Journal of computational neuroscience. 10 [PubMed]

Sotero RC, Trujillo-Barreto NJ, Iturria-Medina Y, Carbonell F, Jimenez JC. (2007). Realistically coupled neural mass models can generate EEG rhythms. Neural computation. 19 [PubMed]

Spreizer S, Aertsen A, Kumar A. (2019). From space to time: Spatial inhomogeneities lead to the emergence of spatiotemporal sequences in spiking neuronal networks. PLoS computational biology. 15 [PubMed]

Tiesinga PH, José JV. (2000). Synchronous clusters in a noisy inhibitory neural network. Journal of computational neuroscience. 9 [PubMed]

Tikidji-Hamburyan RA, Martínez JJ, White JA, Canavier CC. (2015). Resonant Interneurons Can Increase Robustness of Gamma Oscillations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.