Wolfart J, Neuhoff H, Franz O, Roeper J. (2001). Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

See more from authors: Wolfart J · Neuhoff H · Franz O · Roeper J

References and models cited by this paper
References and models that cite this paper

Canavier CC, Landry RS. (2006). An increase in AMPA and a decrease in SK conductance increase burst firing by different mechanisms in a model of a dopamine neuron in vivo. Journal of neurophysiology. 96 [PubMed]

Canavier CC, Oprisan SA, Callaway JC, Ji H, Shepard PD. (2007). Computational model predicts a role for ERG current in repolarizing plateau potentials in dopamine neurons: implications for modulation of neuronal activity. Journal of neurophysiology. 98 [PubMed]

Dougalis AG, Matthews GAC, Liss B, Ungless MA. (2017). Ionic currents influencing spontaneous firing and pacemaker frequency in dopamine neurons of the ventrolateral periaqueductal gray and dorsal raphe nucleus (vlPAG/DRN): A voltage-clamp and computational modelling study. Journal of computational neuroscience. 42 [PubMed]

Kuznetsov AS, Kopell NJ, Wilson CJ. (2006). Transient high-frequency firing in a coupled-oscillator model of the mesencephalic dopaminergic neuron. Journal of neurophysiology. 95 [PubMed]

Kuznetsova AY, Huertas MA, Kuznetsov AS, Paladini CA, Canavier CC. (2010). Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron. Journal of computational neuroscience. 28 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.