Rakowski F, Karbowski J. (2017). Optimal synaptic signaling connectome for locomotory behavior in Caenorhabditis elegans: Design minimizing energy cost. PLoS computational biology. 13 [PubMed]

See more from authors: Rakowski F · Karbowski J

References and models cited by this paper

Abbott LF, Dayan P. (2001). Theoretical Neuroscience. Computational and Mathematical Modeling of Neural Systems.

Attwell D, Laughlin SB. (2001). An energy budget for signaling in the grey matter of the brain. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 21 [PubMed]

Bargmann CI. (1998). Neurobiology of the Caenorhabditis elegans genome. Science (New York, N.Y.). 282 [PubMed]

Bargmann CI, Marder E. (2013). From the connectome to brain function. Nature methods. 10 [PubMed]

Brockie PJ, Maricq AV. (2006). Ionotropic glutamate receptors: genetics, behavior and electrophysiology. WormBook : the online review of C. elegans biology. [PubMed]

Bryden J, Cohen N. (2008). Neural control of Caenorhabditis elegans forward locomotion: the role of sensory feedback. Biological cybernetics. 98 [PubMed]

Chalfie M et al. (1985). The neural circuit for touch sensitivity in Caenorhabditis elegans. The Journal of neuroscience : the official journal of the Society for Neuroscience. 5 [PubMed]

Chen BL, Hall DH, Chklovskii DB. (2006). Wiring optimization can relate neuronal structure and function. Proceedings of the National Academy of Sciences of the United States of America. 103 [PubMed]

Compte A, Sanchez-Vives MV, McCormick DA, Wang XJ. (2003). Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. Journal of neurophysiology. 89 [PubMed]

Ermentrout GB, Terman DH. (2010). Mathematical Foundations of Neuroscience Interdisciplinary Applied Mathematics. 35

Faumont S, Lindsay TH, Lockery SR. (2012). Neuronal microcircuits for decision making in C. elegans. Current opinion in neurobiology. 22 [PubMed]

Faumont S et al. (2011). An image-free opto-mechanical system for creating virtual environments and imaging neuronal activity in freely moving Caenorhabditis elegans. PloS one. 6 [PubMed]

Felch AC, Granger RH. (2008). The hypergeometric connectivity hypothesis: divergent performance of brain circuits with different synaptic connectivity distributions. Brain research. 1202 [PubMed]

Gao S et al. (2015). The NCA sodium leak channel is required for persistent motor circuit activity that sustains locomotion. Nature communications. 6 [PubMed]

Gardiner CW. (2004). Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences Springer Series in Synergetics, 3rd ed.. 13

Goodman MB, Hall DH, Avery L, Lockery SR. (1998). Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron. 20 [PubMed]

Gordus A, Pokala N, Levy S, Flavell SW, Bargmann CI. (2015). Feedback from network states generates variability in a probabilistic olfactory circuit. Cell. 161 [PubMed]

Gray JM, Hill JJ, Bargmann CI. (2005). A circuit for navigation in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]

Hagmann P et al. (2008). Mapping the structural core of human cerebral cortex. PLoS biology. 6 [PubMed]

Haspel G, O'Donovan MJ, Hart AC. (2010). Motoneurons dedicated to either forward or backward locomotion in the nematode Caenorhabditis elegans. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Hendricks M, Ha H, Maffey N, Zhang Y. (2012). Compartmentalized calcium dynamics in a C. elegans interneuron encode head movement. Nature. 487 [PubMed]

Hille B. (2001). Ion channels of excitable membranes (3rd Ed).

Hobert O. (2013). The neuronal genome of Caenorhabditis elegans. WormBook : the online review of C. elegans biology. [PubMed]

Huh S. (2016). Promotion of Neurointervention to International Journal Based on Journal Metrics. Neurointervention. 11 [PubMed]

Izquierdo EJ, Beer RD. (2013). Connecting a connectome to behavior: an ensemble of neuroanatomical models of C. elegans klinotaxis. PLoS computational biology. 9 [PubMed]

Johnson MD, Hyngstrom AS, Manuel M, Heckman CJ. (2012). Push-pull control of motor output. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32 [PubMed]

Karbowski J. (2007). Global and regional brain metabolic scaling and its functional consequences. BMC biology. 5 [PubMed]

Karbowski J. (2015). Cortical Composition Hierarchy Driven by Spine Proportion Economical Maximization or Wire Volume Minimization. PLoS computational biology. 11 [PubMed]

Karbowski J et al. (2006). Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion. Journal of theoretical biology. 242 [PubMed]

Karbowski J, Schindelman G, Cronin CJ, Seah A, Sternberg PW. (2008). Systems level circuit model of C. elegans undulatory locomotion: mathematical modeling and molecular genetics. Journal of computational neuroscience. 24 [PubMed]

Kawano T et al. (2011). An imbalancing act: gap junctions reduce the backward motor circuit activity to bias C. elegans for forward locomotion. Neuron. 72 [PubMed]

Khambhati AN, Davis KA, Lucas TH, Litt B, Bassett DS. (2016). Virtual Cortical Resection Reveals Push-Pull Network Control Preceding Seizure Evolution. Neuron. 91 [PubMed]

Koch C. (1998). Biophysics of Computation: Information Processing in Single Neurons.

Kopell NJ, Gritton HJ, Whittington MA, Kramer MA. (2014). Beyond the connectome: the dynome. Neuron. 83 [PubMed]

Kromer P, Platos J, Snasel V. (2013). Parallel differential evolution in unified parallel C IEEE Congress on Evolutionary Computation (CEC).

Larsch J, Ventimiglia D, Bargmann CI, Albrecht DR. (2013). High-throughput imaging of neuronal activity in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. 110 [PubMed]

Leifer AM, Fang-Yen C, Gershow M, Alkema MJ, Samuel AD. (2011). Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans. Nature methods. 8 [PubMed]

Liu P, Chen B, Mailler R, Wang ZW. (2017). Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses. Nature communications. 8 [PubMed]

Liu P, Chen B, Wang ZW. (2014). SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans. Nature communications. 5 [PubMed]

Luo L et al. (2014). Dynamic encoding of perception, memory, and movement in a C. elegans chemotaxis circuit. Neuron. 82 [PubMed]

Marder E, Bucher D. (2007). Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annual review of physiology. 69 [PubMed]

Mellem JE, Brockie PJ, Zheng Y, Madsen DM, Maricq AV. (2002). Decoding of polymodal sensory stimuli by postsynaptic glutamate receptors in C. elegans. Neuron. 36 [PubMed]

Nguyen JP et al. (2016). Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. 113 [PubMed]

Pereira L et al. (2015). A cellular and regulatory map of the cholinergic nervous system of C. elegans. eLife. 4 [PubMed]

Piggott BJ, Liu J, Feng Z, Wescott SA, Xu XZ. (2011). The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell. 147 [PubMed]

Prevedel R et al. (2014). Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nature methods. 11 [PubMed]

Putrenko I, Zakikhani M, Dent JA. (2005). A family of acetylcholine-gated chloride channel subunits in Caenorhabditis elegans. The Journal of biological chemistry. 280 [PubMed]

Qi YB, Garren EJ, Shu X, Tsien RY, Jin Y. (2012). Photo-inducible cell ablation in Caenorhabditis elegans using the genetically encoded singlet oxygen generating protein miniSOG. Proceedings of the National Academy of Sciences of the United States of America. 109 [PubMed]

Rakowski F, Gorski L, Bala P. (2016). Parallel differential evolution in the PGAS programming model implemented with PCJ Java library Lecture Notes in Computer Science.

Rakowski F, Srinivasan J, Sternberg PW, Karbowski J. (2013). Synaptic polarity of the interneuron circuit controlling C. elegans locomotion. Frontiers in computational neuroscience. 7 [PubMed]

Roberts WM et al. (2016). A stochastic neuronal model predicts random search behaviors at multiple spatial scales inC. elegans. eLife. 5 [PubMed]

Schröter M, Paulsen O, Bullmore ET. (2017). Micro-connectomics: probing the organization of neuronal networks at the cellular scale. Nature reviews. Neuroscience. 18 [PubMed]

Sporns O. (2010). Networks of the brain.

Stephens GJ, Bueno de Mesquita M, Ryu WS, Bialek W. (2011). Emergence of long timescales and stereotyped behaviors in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. 108 [PubMed]

Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS. (2008). Dimensionality and dynamics in the behavior of C. elegans. PLoS computational biology. 4 [PubMed]

Towlson EK, Vértes PE, Ahnert SE, Schafer WR, Bullmore ET. (2013). The rich club of the C. elegans neuronal connectome. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB. (2011). Structural properties of the Caenorhabditis elegans neuronal network. PLoS computational biology. 7 [PubMed]

Venkatachalam V et al. (2016). Pan-neuronal imaging in roaming Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. 113 [PubMed]

Wang XJ. (1998). Calcium coding and adaptive temporal computation in cortical pyramidal neurons. Journal of neurophysiology. 79 [PubMed]

Wang XJ. (2008). Decision making in recurrent neuronal circuits. Neuron. 60 [PubMed]

Webpage W. (2017). www.wormbook.org.

Wen Q et al. (2012). Proprioceptive coupling within motor neurons drives C. elegans forward locomotion. Neuron. 76 [PubMed]

White JG, Southgate E, Thomson JN, Brenner S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 314 [PubMed]

Wicks SR, Roehrig CJ, Rankin CH. (1996). A dynamic network simulation of the nematode tap withdrawal circuit: predictions concerning synaptic function using behavioral criteria. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16 [PubMed]

Xie L et al. (2013). NLF-1 delivers a sodium leak channel to regulate neuronal excitability and modulate rhythmic locomotion. Neuron. 77 [PubMed]

Zaslaver A et al. (2015). Hierarchical sparse coding in the sensory system of Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America. 112 [PubMed]

Zhen M, Samuel AD. (2015). C. elegans locomotion: small circuits, complex functions. Current opinion in neurobiology. 33 [PubMed]

Zheng Y, Brockie PJ, Mellem JE, Madsen DM, Maricq AV. (1999). Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR-1 ionotropic glutamate receptor. Neuron. 24 [PubMed]

de Bono M, Maricq AV. (2005). Neuronal substrates of complex behaviors in C. elegans. Annual review of neuroscience. 28 [PubMed]

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.