Babadi B. (2005). Bursting as an effective relay mode in a minimal thalamic model. Journal of computational neuroscience. 18 [PubMed]
Béhuret S, Deleuze C, Gomez L, Frégnac Y, Bal T. (2013). Cortically-controlled population stochastic facilitation as a plausible substrate for guiding sensory transfer across the thalamic gateway PLoS computational biology. 9 [PubMed]
Debay D, Wolfart J, Le Franc Y, Le Masson G, Bal T. (2004). Exploring spike transfer through the thalamus using hybrid artificial-biological neuronal networks. Journal of physiology, Paris. 98 [PubMed]
Eger M, Eckhorn R. (2002). Assessing the encoding of stimulus attributes with rapid sequences of stimulus events. Journal of computational neuroscience. 13 [PubMed]
Huertas MA, Groff JR, Smith GD. (2005). Feedback inhibition and throughput properties of an integrate-and-fire-or-burst network model of retinogeniculate transmission. Journal of computational neuroscience. 19 [PubMed]
Huertas MA, Smith GD. (2006). A multivariate population density model of the dLGN/PGN relay. Journal of computational neuroscience. 21 [PubMed]
Keil MS. (2006). Smooth gradient representations as a unifying account of Chevreul's illusion, Mach bands, and a variant of the Ehrenstein disk. Neural computation. 18 [PubMed]
Mukherjee P, Kaplan E. (1995). Dynamics of neurons in the cat lateral geniculate nucleus: in vivo electrophysiology and computational modeling. Journal of neurophysiology. 74 [PubMed]
Mukherjee P, Kaplan E. (1998). The maintained discharge of neurons in the cat lateral geniculate nucleus: spectral analysis and computational modeling. Visual neuroscience. 15 [PubMed]
Van Rossum MC. (2001). The transient precision of integrate and fire neurons: effect of background activity and noise. Journal of computational neuroscience. 10 [PubMed]
Wolfart J, Debay D, Le Masson G, Destexhe A, Bal T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature neuroscience. 8 [PubMed]