MacLeod K, Bäcker A, Laurent G. (1998). Who reads temporal information contained across synchronized and oscillatory spike trains? Nature. 395 [PubMed]

See more from authors: MacLeod K · Bäcker A · Laurent G

References and models cited by this paper
References and models that cite this paper

Assisi C, Stopfer M, Bazhenov M. (2020). Optimality of sparse olfactory representations is not affected by network plasticity. PLoS computational biology. 16 [PubMed]

Bazhenov M et al. (2001). Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron. 30 [PubMed]

Bazhenov M et al. (2001). Model of transient oscillatory synchronization in the locust antennal lobe. Neuron. 30 [PubMed]

Jolivet R et al. (2008). A benchmark test for a quantitative assessment of simple neuron models. Journal of neuroscience methods. 169 [PubMed]

Kim S, Singer BH, Zochowski M. (2006). Changing roles for temporal representation of odorant during the oscillatory response of the olfactory bulb. Neural computation. 18 [PubMed]

Komarov M, Bazhenov M. (2016). Linking dynamics of the inhibitory network to the input structure. Journal of computational neuroscience. 41 [PubMed]

Kretzberg J, Warzecha AK, Egelhaaf M. (2001). Neural coding with graded membrane potential changes and spikes. Journal of computational neuroscience. 11 [PubMed]

Lestienne R. (2001). Spike timing, synchronization and information processing on the sensory side of the central nervous system. Progress in neurobiology. 65 [PubMed]

Linster C, Cleland TA. (2001). How spike synchronization among olfactory neurons can contribute to sensory discrimination. Journal of computational neuroscience. 10 [PubMed]

Masuda N, Aihara K. (2003). Duality of rate coding and temporal coding in multilayered feedforward networks. Neural computation. 15 [PubMed]

Miller CS, Johnson DH, Schroeter JP, Myint L, Glantz RM. (2003). Visual responses of crayfish ocular motoneurons: an information theoretical analysis. Journal of computational neuroscience. 15 [PubMed]

Salinas E, Sejnowski TJ. (2001). Correlated neuronal activity and the flow of neural information. Nature reviews. Neuroscience. 2 [PubMed]

Sanders H, Berends M, Major G, Goldman MS, Lisman JE. (2013). NMDA and GABAB (KIR) conductances: the "perfect couple" for bistability. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Sanders H et al. (2014). A network that performs brute-force conversion of a temporal sequence to a spatial pattern: relevance to odor recognition. Frontiers in computational neuroscience. 8 [PubMed]

Schoppa NE, Westbrook GL. (2002). AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli. Nature neuroscience. 5 [PubMed]

Tiesinga PH, Fellous JM, José JV, Sejnowski TJ. (2002). Information transfer in entrained cortical neurons. Network (Bristol, England). 13 [PubMed]

Tiesinga PH, José JV. (2000). Synchronous clusters in a noisy inhibitory neural network. Journal of computational neuroscience. 9 [PubMed]

Tripp B, Eliasmith C. (2007). Neural populations can induce reliable postsynaptic currents without observable spike rate changes or precise spike timing. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.