Gawne TJ, Richmond BJ. (1993). How independent are the messages carried by adjacent inferior temporal cortical neurons? The Journal of neuroscience : the official journal of the Society for Neuroscience. 13 [PubMed]

See more from authors: Gawne TJ · Richmond BJ

References and models cited by this paper
References and models that cite this paper

Bezzi M, Diamond ME, Treves A. (2002). Redundancy and synergy arising from pairwise correlations in neuronal ensembles. Journal of computational neuroscience. 12 [PubMed]

Fellous JM, Rudolph M, Destexhe A, Sejnowski TJ. (2003). Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience. 122 [PubMed]

Jolivet R, Gerstner W. (2004). Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. Journal of physiology, Paris. 98 [PubMed]

Jolivet R, Rauch A, Lüscher HR, Gerstner W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of computational neuroscience. 21 [PubMed]

Lestienne R. (2001). Spike timing, synchronization and information processing on the sensory side of the central nervous system. Progress in neurobiology. 65 [PubMed]

Montemurro MA et al. (2007). Role of precise spike timing in coding of dynamic vibrissa stimuli in somatosensory thalamus. Journal of neurophysiology. 98 [PubMed]

Montemurro MA, Senatore R, Panzeri S. (2007). Tight data-robust bounds to mutual information combining shuffling and model selection techniques. Neural computation. 19 [PubMed]

Nakahara H, Amari S, Richmond BJ. (2006). A comparison of descriptive models of a single spike train by information-geometric measure. Neural computation. 18 [PubMed]

Pola G, Petersen RS, Thiele A, Young MP, Panzeri S. (2005). Data-robust tight lower bounds to the information carried by spike times of a neuronal population. Neural computation. 17 [PubMed]

Shlens J, Kennel MB, Abarbanel HD, Chichilnisky EJ. (2007). Estimating information rates with confidence intervals in neural spike trains. Neural computation. 19 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.