Anderson DJ, Rose JE, Hind JE, Brugge JF. (1971). Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. The Journal of the Acoustical Society of America. 49 [PubMed]

See more from authors: Anderson DJ · Rose JE · Hind JE · Brugge JF

References and models cited by this paper
References and models that cite this paper

Carlson BA, Kawasaki M. (2006). Ambiguous encoding of stimuli by primary sensory afferents causes a lack of independence in the perception of multiple stimulus attributes. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Carney LH, Zhang X, Heinz MG, Bruce IC. (2001). Auditory nerve model for predicting performance limits of normal and impaired listeners. Acoustics Research Letters Online. 2(3)

Colburn HS, Carney LH, Heinz MG. (2003). Quantifying the information in auditory-nerve responses for level discrimination. Journal of the Association for Research in Otolaryngology : JARO. 4 [PubMed]

Colburn HS, Carney LH, Heinz MG, Evilsizer ME, Gilkey RH. (2002). Auditory Phase Opponency: A Temporal Model for Masked Detection at Low Frequencies Acta Acustica united with Acustica. 88

Güçlü B, Bolanowski SJ. (2004). Tristate markov model for the firing statistics of rapidly-adapting mechanoreceptive fibers. Journal of computational neuroscience. 17 [PubMed]

Heinz MG, Colburn HS, Carney LH. (2001). Evaluating auditory performance limits: i. one-parameter discrimination using a computational model for the auditory nerve. Neural computation. 13 [PubMed]

Heinz MG, Colburn HS, Carney LH. (2001). Rate and timing cues associated with the cochlear amplifier: level discrimination based on monaural cross-frequency coincidence detection. The Journal of the Acoustical Society of America. 110 [PubMed]

Nelson PC, Carney LH. (2007). Neural rate and timing cues for detection and discrimination of amplitude-modulated tones in the awake rabbit inferior colliculus. Journal of neurophysiology. 97 [PubMed]

Sterratt DC, Graham B, Gillies A, Willshaw D. (2011). Principles of Computational Modelling in Neuroscience, Cambridge University Press.

Tan Q, Carney LH. (2003). A phenomenological model for the responses of auditory-nerve fibers. II. Nonlinear tuning with a frequency glide. The Journal of the Acoustical Society of America. 114 [PubMed]

Zhang X, Heinz MG, Bruce IC, Carney LH. (2001). A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. The Journal of the Acoustical Society of America. 109 [PubMed]

Zilany MS, Bruce IC. (2006). Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. The Journal of the Acoustical Society of America. 120 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.