Bokil H, Laaris N, Blinder K, Ennis M, Keller A. (2001). Ephaptic interactions in the mammalian olfactory system. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]
Cecchi GA, Petreanu LT, Alvarez-Buylla A, Magnasco MO. (2001). Unsupervised learning and adaptation in a model of adult neurogenesis. Journal of computational neuroscience. 11 [PubMed]
Chen WR, Shen GY, Shepherd GM, Hines ML, Midtgaard J. (2002). Multiple modes of action potential initiation and propagation in mitral cell primary dendrite. Journal of neurophysiology. 88 [PubMed]
Cleland TA, Sethupathy P. (2006). Non-topographical contrast enhancement in the olfactory bulb. BMC neuroscience. 7 [PubMed]
Davison A. (2004). Biologically-detailed network modelling (Chapter 10) Computation Neuroscience: A Comprehensive Approach.
Kaplan BA, Lansner A. (2014). A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system. Frontiers in neural circuits. 8 [PubMed]
Kim S, Singer BH, Zochowski M. (2006). Changing roles for temporal representation of odorant during the oscillatory response of the olfactory bulb. Neural computation. 18 [PubMed]
Lowe G. (2002). Inhibition of backpropagating action potentials in mitral cell secondary dendrites. Journal of neurophysiology. 88 [PubMed]
Margrie TW, Schaefer AT. (2003). Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. The Journal of physiology. 546 [PubMed]
Masurkar AV, Chen WR. (2011). Calcium currents of olfactory bulb juxtaglomerular cells: profile and multiple conductance plateau potential simulation. Neuroscience. 192 [PubMed]
Masurkar AV, Chen WR. (2011). Potassium currents of olfactory bulb juxtaglomerular cells: characterization, simulation, and implications for plateau potential firing. Neuroscience. 192 [PubMed]
de Almeida L, Idiart M, Linster C. (2013). A model of cholinergic modulation in olfactory bulb and piriform cortex. Journal of neurophysiology. 109 [PubMed]