Assisi C, Stopfer M, Bazhenov M. (2020). Optimality of sparse olfactory representations is not affected by network plasticity. PLoS computational biology. 16 [PubMed]
Bazhenov M et al. (2001). Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron. 30 [PubMed]
Bazhenov M et al. (2001). Model of transient oscillatory synchronization in the locust antennal lobe. Neuron. 30 [PubMed]
Bendels MH, Leibold C. (2007). Generation of theta oscillations by weakly coupled neural oscillators in the presence of noise. Journal of computational neuroscience. 22 [PubMed]
Branco T, Clark BA, Häusser M. (2010). Dendritic discrimination of temporal input sequences in cortical neurons. Science (New York, N.Y.). 329 [PubMed]
Ermentrout B, Wang JW, Flores J, Gelperin A. (2004). Model for transition from waves to synchrony in the olfactory lobe of Limax. Journal of computational neuroscience. 17 [PubMed]
Fdez Galán R, Sachse S, Galizia CG, Herz AV. (2004). Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification. Neural computation. 16 [PubMed]
Gütig R, Sompolinsky H. (2009). Time-warp-invariant neuronal processing. PLoS biology. 7 [PubMed]
Hopfield JJ, Brody CD. (2001). What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proceedings of the National Academy of Sciences of the United States of America. 98 [PubMed]
Horcholle-Bossavit G, Quenet B, Foucart O. (2007). Oscillation and coding in a formal neural network considered as a guide for plausible simulations of the insect olfactory system. Bio Systems. 89 [PubMed]
Johnson DH, Gruner CM, Baggerly K, Seshagiri C. (2001). Information-theoretic analysis of neural coding. Journal of computational neuroscience. 10 [PubMed]
Kim S, Singer BH, Zochowski M. (2006). Changing roles for temporal representation of odorant during the oscillatory response of the olfactory bulb. Neural computation. 18 [PubMed]
Komarov M, Bazhenov M. (2016). Linking dynamics of the inhibitory network to the input structure. Journal of computational neuroscience. 41 [PubMed]
Linster C, Cleland TA. (2001). How spike synchronization among olfactory neurons can contribute to sensory discrimination. Journal of computational neuroscience. 10 [PubMed]
Martinez D. (2005). Oscillatory synchronization requires precise and balanced feedback inhibition in a model of the insect antennal lobe. Neural computation. 17 [PubMed]
Nowotny T, Rabinovich MI, Huerta R, Abarbanel HD. (2003). Decoding temporal information through slow lateral excitation in the olfactory system of insects. Journal of computational neuroscience. 15 [PubMed]
Rajagopalan A, Assisi C. (2020). Effect of circuit structure on odor representation in the insect olfactory system. eNeuro. 7 [PubMed]
Sanders H, Berends M, Major G, Goldman MS, Lisman JE. (2013). NMDA and GABAB (KIR) conductances: the "perfect couple" for bistability. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]
Sanders H et al. (2014). A network that performs brute-force conversion of a temporal sequence to a spatial pattern: relevance to odor recognition. Frontiers in computational neuroscience. 8 [PubMed]
Steuber V, Willshaw D. (2004). A biophysical model of synaptic delay learning and temporal pattern recognition in a cerebellar Purkinje cell. Journal of computational neuroscience. 17 [PubMed]
Tiesinga PH, José JV. (2000). Synchronous clusters in a noisy inhibitory neural network. Journal of computational neuroscience. 9 [PubMed]
Wilson NR, Bodnar DA, Skovira JF, Land BR. (2001). Processing of auditory midbrain interspike intervals by model neurons. Journal of computational neuroscience. 10 [PubMed]