Amari S, Cardoso JF. (1997). Blind source separation-Semi-parametric statistical approach IEEE Trans On Signal Processing. 45
Amari SL, Cichocki A, Yang HH. (1996). A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems.. 8
Bell AJ, Sejnowski TJ. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural computation. 7 [PubMed]
Cardoso JF, Souloumiac A. (1993). Blind beamforming for non-gaussian signals Proc IEEE. 140
Eguchi S, Kano Y. (2001). Robustifying maximum likelihood estimation (Research memorandum 802).
Eguchi S, Minami M. (2003). Adaptive selection for minimum ß-divergence method. Proceedings of ICA-2003 Conference.
Jutten C, Herault J. (1991). Blind separation of sources. Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing. 24
Lee TW. (2001). Independent component analysis: Theory and applications.
Lee TW, Girolami M, Sejnowski TJ. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural computation. 11 [PubMed]
Lewicki MS, Lee TW. (2000). The generalized gaussian mixture model using ICA Proc. International Workshop on Independent Component Analysis.
Mclachlan GJ, Peel D. (2000). Finite mixture models.
Mihoko M, Eguchi S. (2002). Robust blind source separation by beta divergence. Neural computation. 14 [PubMed]
Nocedal J. (1992). Theory of algorithms for unconstrained optimization.
Oja E, Hyvarinen A, Karunen J. (2001). Independent component analysis.
Sejnowski TJ, Lewicki MS, Lee TW. (2000). ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation IEEE Trans On Pattern Analysis An Machine Int. 22
Tibshirani R, Hastie T, Friedman J. (2001). The elements of statistical learning.