Schwindt PC et al. (1988). Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. Journal of neurophysiology. 59 [PubMed]

See more from authors: Schwindt PC · Spain WJ · Foehring RC · Stafstrom CE · Chubb MC · Crill WE

References and models cited by this paper
References and models that cite this paper

Ahmed B, Anderson JC, Douglas RJ, Martin KA, Whitteridge D. (1998). Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex. Cerebral cortex (New York, N.Y. : 1991). 8 [PubMed]

Bernander O, Koch C, Douglas RJ. (1994). Amplification and linearization of distal synaptic input to cortical pyramidal cells. Journal of neurophysiology. 72 [PubMed]

Bernasconi C, Schindler K, Stoop R, Douglas R. (1999). Complex response to periodic inhibition in simple and detailed neuronal models. Neural computation. 11 [PubMed]

Fortier PA, Guigon E, Burnod Y. (2005). Supervised learning in a recurrent network of rate-model neurons exhibiting frequency adaptation. Neural computation. 17 [PubMed]

Gabbiani F, Krapp HG. (2006). Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. Journal of neurophysiology. 96 [PubMed]

Gu N, Vervaeke K, Storm JF. (2007). BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells. The Journal of physiology. 580 [PubMed]

Kanold PO, Manis PB. (1999). Transient potassium currents regulate the discharge patterns of dorsal cochlear nucleus pyramidal cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]

Lytton WW, Sejnowski TJ. (1991). Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. Journal of neurophysiology. 66 [PubMed]

Mainen ZF, Sejnowski TJ. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature. 382 [PubMed]

Melnick IV, Santos SF, Szokol K, Szûcs P, Safronov BV. (2004). Ionic basis of tonic firing in spinal substantia gelatinosa neurons of rat. Journal of neurophysiology. 91 [PubMed]

Mensi S et al. (2012). Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanisms. Journal of neurophysiology. 107 [PubMed]

Paré D, Lang EJ, Destexhe A. (1998). Inhibitory control of somatodendritic interactions underlying action potentials in neocortical pyramidal neurons in vivo: an intracellular and computational study. Neuroscience. 84 [PubMed]

Reuveni I, Friedman A, Amitai Y, Gutnick MJ. (1993). Stepwise repolarization from Ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of HVA Ca2+ channels in dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 13 [PubMed]

Rhodes PA, Llinás RR. (2001). Apical tuft input efficacy in layer 5 pyramidal cells from rat visual cortex. The Journal of physiology. 536 [PubMed]

Yang CR, Seamans JK, Gorelova N. (1999). Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 21 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.