Antón PS, Granger R, Lynch G. (1993). Simulated dendritic spines influence reciprocal synaptic strengths and lateral inhibition in the olfactory bulb. Brain research. 628 [PubMed]
Carnevale NT, Woolf TB, Shepherd GM. (1990). Neuron simulations with SABER. Journal of neuroscience methods. 33 [PubMed]
D'Aguanno A, Bardakjian BL, Carlen PL. (1989). A system model for investigating passive electrical properties of neurons. Biophysical journal. 55 [PubMed]
De Schutter E, Bower JM. (1994). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. Journal of neurophysiology. 71 [PubMed]
McIntyre CC, Grill WM. (1999). Excitation of central nervous system neurons by nonuniform electric fields. Biophysical journal. 76 [PubMed]
Meuth P et al. (2005). Get the rhythm: modeling neuronal activity. Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience. 4 [PubMed]
Ray S, Bhalla US. (2008). PyMOOSE: Interoperable Scripting in Python for MOOSE. Frontiers in neuroinformatics. 2 [PubMed]
Shapiro NP, Lee RH. (2007). Synaptic amplification versus bistability in motoneuron dendritic processing: a top-down modeling approach. Journal of neurophysiology. 97 [PubMed]
Shepherd GM, Brayton RK. (1987). Logic operations are properties of computer-simulated interactions between excitable dendritic spines. Neuroscience. 21 [PubMed]
Spruston N, Johnston D. (1992). Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. Journal of neurophysiology. 67 [PubMed]
Woolf TB, Shepherd GM, Greer CA. (1991). Local information processing in dendritic trees: subsets of spines in granule cells of the mammalian olfactory bulb. The Journal of neuroscience : the official journal of the Society for Neuroscience. 11 [PubMed]