Atiya AF. (2005). Estimating the posterior probabilities using the k-nearest neighbor rule. Neural computation. 17 [PubMed]

See more from authors: Atiya AF

References and models cited by this paper

Atiya AF. (2001). Bankruptcy prediction for credit risk using neural networks: a survey and new results. IEEE transactions on neural networks. 12 [PubMed]

Bermejo S, Cabestany J. (2000). Adaptive soft K-nearest-neighbour classifiers Pattern Recognition. 33

Devroye L, Gyorfi L, Lugosi G. (1996). A probabilistic theory of pattern recognition.

Dudani S. (1976). The distance weighted K-nearest-neighbor rule IEEE Trans Systems Man Cybern. 6

Fukunaga K, Hostetler L. (1975). K-nearest-neighbor Bayes-risk estimation IEEE Trans Information Theory. 21

Fukunaga K, Kessell D. (1971). Estimation of classification error IEEE Trans Computers. 20

Fukunaga K, Kessell D. (1973). Nonparametric Bayes error estimation using unclassified samples IEEE Trans Information Theory. 19

Glick N. (1978). Additive estimators for probabilities of correct classification Pattern Recognition. 10

Guerrero-Curieses A, Cid-Sueiro J, Alaiz-Rodríguez R, Figueiras-Vidal AR. (2004). Local estimation of posterior class probabilities to minimize classification errors. IEEE transactions on neural networks. 15 [PubMed]

Hand D. (1986). Recent advances in error rate estimation Pattern Recognition Letters. 4

Jain A, Bailey T. (1978). A note on distance-weighted K-nearest neighbor rules IEEE Trans. Systems, Man, Cybern. 8

Kanal L. (1974). Patterns in pattern recognition: 1968-1974 IEEE Trans Information Theory. 20

Kittler J, Devijver P. (1981). An effient estimator of pattern recognition system error probability Pattern Recognition. 13

Kroke J. (1986). The robust estimation of classification error rates Comput Math Appl. 12A

Lugosi G, Kulkarni S, Venkatesh S. (1998). Learning pattern classification-a survey IEEE Trans Information Theory. 44

Mao J, Jain A, Duin R. (2000). Statistical pattern recognition: A review IEEE Trans Pattern Anal Mach Intell. 22

Pawlak M, Lugosi G. (1994). On the posterior-probability estimate of the error rate of nonparametric classification rules IEEE Trans Information Theory. 40

Royall R. (1966). A class of nonparametric estimators of a smooth regression function Unpublished doctoral dissertation.

Scholkopf B, Smola AJ. (2001). Learning with kernels: Support vector machines, regularization, optimization, and beyond.

Toussaint G. (2002). Proximity graphs for nearest neighbor decision rules: Recent progress Proc. 34th Symp. Computing and Statistics (INTERFACE-2002 Available at http:--www-cgrl.cs.mcgill.ca-godfried-research-nearest.neighbor.htm).

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.