An CH, Atkeson C, Hollerbach J. (1988). Model based control of a robot manipulator.
Atkeson CG, Schaal S, Vijayakumar S. (1998). Local dimensionality reduction Advances in neural information processing systems. 10
Belsley DA, Kuh E, Welsch D. (1980). Regression diagnostics.
Bishop C, Tipping M. (1999). Probabilistic principal component analysis J Roy Stat Soc B. 61
Cooper LN, Perrone MP. (1993). Neural networks for speech and image processing.
Everitt BS. (1984). An introduction to latent variable models.
Friedman J, Frank I. (1993). A statistical view of some chemometric tools Technometrics. 35
Ghahramani Z, Beal M. (2000). Variational inference for Bayesian mixtures of factor analysers Advances in neural information processing systems. 12
Hettich S, Bay S. (1999). The UCI KDD archive.
Jacobs RA, Jordan MI. (1994). Hierarchical mixtures of experts and the EM algorithm Neural Comput. 6
Lebiere C, Fahlman SE. (1990). The cascade-correlation learning architecture Advances in neural information processing systems. 2
Ljung L, Soderstrom T. (1986). Theory and practice of recursive identification.
Loader C, Hastie T. (1993). Local regression: Automatic kernel carpentry Statistical Science. 8
Mackay DJC, Gibbs M. (1997). Efficient implementation of gaussian processes Tech Rep.
Myers RH. (1990). Classical and modern regression with applications.
Ogawa H, Vijayakumar S. (1999). RKHS based functional analysis for exact incremental learning Neurocomputing. 29
Platt J. (1991). A resource-allocating network for function interpolation Neural Comput. 3
Press WH, Teukolsky SA, Vetterling WT, Flannery BP. (1989). Numerical Recipes.
Roweis ST, Saul LK. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science (New York, N.Y.). 290 [PubMed]
Rubin D, Thayer D. (1982). EM algorithms for ML factor analysis Psychometrika. 47
Rubin DB, Gelman AB, Carlin JS, Stern HS. (1995). Bayesian data analysis.
Sanger TD. (1989). Optimal unsupervised learning in a single-layer linear feedforward neural networks Neural Networks. 2
Schaal S, Atkeson C. (1994). Assessing the quality of learned local models Advances in neural information processing systems.
Schaal S, Atkeson C. (1997). Receptive field weighted regression Tech. Rep. TR-H-209.
Schaal S, Atkeson C, Moore A. (1997). Locally weighted learning Art Intell Rev. 11
Schaal S, Atkeson CG. (1998). Constructive incremental learning from only local information Neural computation. 10 [PubMed]
Schaal S, Nakanishi J, Farrell JA. (2004). Composite adaptive control with locally weighted statistical learning IEEE International Conference on Robotics and Automation .
Schaal S, Vijayakumar S. (1998). Local adaptive subspace regression Neural Proc Lett. 7
Schaal S, Vijayakumar S, Dsouza A. (2001). Are internal models of the entire body learnable? Soc Neurosci Abstr. 27
Scholkopf B, Smola A, Muller KR. (1999). Kernel principal component analysis Advances in kernel methods-Support vector learning.
Scholkopf B, Smola AJ. (1998). A tutorial on support vector regression Tech. Rep. No. NC-TR-98-030.
Scholkopf B, Smola AJ, Williamson RC, Bartlett PL. (2000). New support vector algorithms Neural computation. 12 [PubMed]
Scott DW. (1992). Multivariate density estimation: Theory, practice, and visualization.
Smola A et al. (1998). Support vector machine-reference manual Tech. Rep. TR CSD-TR-98-03.
Stevens BL, Lewis FL. (2003). Aircraft control and simulation.
Stuetzle W, Friedman J. (1981). Projection pursuit regression J Am Stat Assoc. 76
Tenenbaum JB, de Silva V, Langford JC. (2000). A global geometric framework for nonlinear dimensionality reduction. Science (New York, N.Y.). 290 [PubMed]
Tibshirani R, Hastie T. (1990). Generalized additive models.
Ueda N, Nakano R, Ghahramani Z, Hinton GE. (2000). SMEM algorithm for mixture models. Neural computation. 12 [PubMed]
Vlassis N, Motomura Y, Kröse B. (2002). Supervised dimension reduction of intrinsically low-dimensional data. Neural computation. 14 [PubMed]
Williams CKI, Rasmussen CE. (1996). Gaussian processes for regression Advances in neural processing systems. 8
Williams CKI, Seeger M. (2001). Using the Nystrom method to speed up kernel machines Advances in neural information processing systems. 13
Wold H. (1975). Perspectives in probability and statistics.
Xu L, Hinton G, Jordan M. (1995). An alternative model for mixtures of experts Advances in neural information processing systems. 7
Casellato C et al. (2014). Adaptive robotic control driven by a versatile spiking cerebellar network. PloS one. 9 [PubMed]